

Stata 統計軟體教育訓練課程 Network Meta-analysis

醫學研究部 基礎醫學科 生統小組:陳韻伃 博士 授課日期:112年4月27日

安裝Network Meta-analysis相關套件

*從以下開始安裝 * MA/NMA net from "http://www.homepages.ucl.ac.uk/~rmjwiww/stata/meta/" net install network.pkg, replace net install mvmeta.pkg, replace

*Network plot ssc install netplot net from "https://clinicalepidemio.fr/Stata" net install network_graphs.pkg, replace net install metamiss2.pkg, replace

help network graph

SJ-15-4 st0411 . Visualizing assumptions and results in network meta-analysis A. Chaimani and G. Salanti (help network graphs, clusterank, ifplot, intervalplot, mdsrank, netfunnel, netleague, netweight, networkplot, sucra if installed) Q4/15 SJ 15(4):905-950 provides a suite of commands with graphical tools to facilitate the understanding of data, the evaluation of assumptions, and the interpretation of findings from network meta-analysis

* SE code

2

net from "http://www.stata-journal.com/software/sj10-4/" net install st0043_2.pkg, replace

Preparing for Analysis: 先設定長檔案

use "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\112年 生統課程規劃\護理部-Stata\Stata-Network meta_new\long_data.dta"

network setup d n, studyvar (study) trtvar(trt) ref(A)

File	Data Editor (Brow Edit View Def Parket Stud	vse) - [long_c Data To 🗈 🖻 y[1]	data] ools • • • •	lshryda201	d: number of events n: total sample size studyvar → study: variable of study title trtvar → trt: variable of treatment
	study	d	n	trt	IEI. A OFFICEEDO
1	Alshryda2013	10	80	C	
2	Alshryda2013	26	81	А	
3	Barrachina2016	8	35	E	
4	Barrachina2016	4	36	В	
5	Barrachina2016	14	37	А	
6	Benoni2000	9	20	В	
7	Benoni2000	15	19	А	
8	Benoni2001	4	18	E	

先設定檔案 for Network Meta-analysis

4

Α

Placebo

network setup d n, studyvar (study) trtvar(trt) ref(A)

В

IV_single

USE

С

IV_double

USE

	<pre>. network setup d n, studyvar (study) Treatments used A (reference): B: C: D: E:</pre>	trtvar(trt) ref(A) A B C D E	
E	Measure Studies ID variable: Number dropped:	Log odds ratio study 1	
Combinatio n_IV_and_t opical	Number used: IDs with zero cells: - count added to all their cells: IDs with augmented reference arm: - observations added: - mean in augmented observations: Network information Components: D.f. for inconsistency: D.f. for heterogeneity: Current data Data format: Design variable: Estimate variables: Variance variables: Command to list the data:	24 "Xie2016"' "Yamasaki2004"' .5 "North2016"' "Xie2016"' 0.00001 study-specific mean 1 (connected) 8 16 augmented _design _y* _S* lict study, y* S* poo senby(design)	

study[1]			4	Alshryda201	3												
	study	dA	nA	dB	nB	dC	nC	dD	nD	dE	nE	_design	_y_ ^B	_y_c	_y_D	_y_E	_S_B_B
1	Alshryda2013	26	81			10	80					A C		-1.1966735			
2	Barrachina2016	14	37	4	36					8	35	ABE	-1.5830047			71995844	.39615683
3	Benoni2000	15	19	9	20							A B	-1.5224265				.51868687
4	Benoni2001	8	20							4	18	A E				84729786	
5	Claeys2007	6	20							1	20	A E				-2.0971411	
6	Ekb2000	1	20	1	20							A B	0				2.1052632
7	Fraval2017	6	51	1	50							A B	-1.8769173				1.2092971
8	Garneti2004	14	25							16	25	A E				.33420209	
9	Hsu2015	9	30	2	30							A B	-1.7917595				.69444444
10	Husted2003	7	20	2	20							A B	-1.5781854				.77533578
11	Johansson2005	23	53							8	47	A E				-1.3184169	

D

Topical_use

Step 1: Generating Network Geometry

Network plot: 輸入指令 network map

5

Step 2: Testing for Inconsistency

6

■ Global inconsistency Test 輸入指令 network meta inconsistency

Method = reml Restricted log	g likelihood =	-34.684006		Number of Number of	dimensions observations	= 4 5 = 24
	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
_у_В						
	2177834	.6846	-0.32	0.750	-1.559575	1.124008
_cons	-1.365221	.269296	-5.07	0.000	-1.893032	8374108
_y_c						
des_ACE	6561662	.6028711	-1.09	0.276	-1.837772	.5254395
des_BC	.1947812	.6700162	0.29	0.771	-1.118426	1.507989
des_CDE	.6167358	.974232	0.63	0.527	-1.292724	2.526195
_cons	-1.070454	.3665995	-2.92	0.004	-1.788976	3519321
_y_D						
des_CDE	.6929186	1.922747	0.36	0.719	-3.075596	4.461433
_cons	-3.402272	1.051331	-3.24	0.001	-5.462844	-1.3417
_y_E						
des_ACE	9961905	.7114154	-1.40	0.161	-2.390539	.3981581
des_ADE	4487215	.7145929	-0.63	0.530	-1.849298	.9518549
des_AE	2528214	.5704532	-0.44	0.658	-1.370889	.8652463
_cons	7199583	.5262546	-1.37	0.171	-1.751398	.3114817

Estimated between-studies SDs and correlation matrix

		SD	_y_B	_y_c	_y_D	_y_E
	_y_B	3.083e-07	1			
١	_y_c	3.083e-07	.5	1		
	_y_D	3.083e-07	.5	.5	1	
	_y_E	3.083e-07	.5	.5	.5	1

Estim	ated between-	studies SDs	and correla	ation matrix	
	SD	_у_в	_y_c	_y_D	_y_E
_y_B	3.083e-07	1			
_y_c	3.083e-07	.5	1		
_y_D	3.083e-07	.5	.5	1	
_y_E	3.083e-07	.5	.5	.5	1

Testing for inconsistency:

- (1) [_y_B]des_ABE = 0 (2) [_y_E]des_ACE = 0 (3) [_y_C]des_ACE = 0 (4) [_y_E]des_ADE = 0 (5) [_y_E]des_AE = 0 (6) [_y_C]des_BC = 0
- (7) [_y_C]des_CDE = 0
- (8) [_y_D]des_CDE = 0

chi2(8) =	4.09
Prob > c	:hi2 =	0.8492

無法拒絕虛無假說 一致性 consistency 的水準可接受

Step 2: Testing for Inconsistency

Local inconsistency Test 輸入指令 network sidesplit all

network sidesplit all

無法拒絕虛無假說 一致性 consistency 的水準可

Side	Direct		Indirect		Difference			
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	P> z	
AB	-1.387832	.246631	-1.834588	.5000808	.4467555	.5475861	0.415	
AC	-1.346768	.2878734	7355726	.4132222	6111958	.4901931	0.212	
A D	-3.420298	.939617	-3.203182	1.005883	2171159	.9367965	0.817	
AE	-1.08404	.1738511	7891631	.6352852	2948771	.6513169	0.651	
BC	.4895483	.4919413	.2233391	.3632928	.2662092	.6115455	0.663	
BE	.8919491	.655003	.3065194	.2968191	.5854297	.7146861	0.413	
CD	-2.534345	1.25485	-2.009367	.9639263	5249778	1.320922	0.691	
CE	0989284	.4620928	.1914716	.3474008	2904	.5783735	0.616	
DE*	2.152297	.8813737	2.593058	1.087671	4407617	.8966076	0.623	
 -								

Because inconsistency was found to be absent in both global and local tests, the consistency assumption was accepted

7

8

► 先設定 network meta consistency

. network meta consistency Command is: mvmeta y S , bscovariance(exch 0.5) longparm suppress(uv mm) vars(y B y C y D y E) Note: using method reml Note: using variables _y_B _y_C _y_D _y_E Note: 24 observations on 4 variables Note: variance-covariance matrix is proportional to .5*I(4)+.5*J(4,4,1) initial: log likelihood = -49.494181 log likelihood = -49.494181 rescale: rescale eq: log likelihood = -41.242314 Iteration 0: log likelihood = -41.242314 log likelihood = -41.138072 Iteration 1: log likelihood = -41.13807 Iteration 2: Multivariate meta-analysis Variance-covariance matrix = proportional .5*I(4)+.5*J(4,4,1) Number of dimensions Method = reml 4 = Restricted log likelihood = -41.13807 Number of observations = 24 Coefficient Std. err. z P> | z | [95% conf. interval] _y_B _cons -1.470223 .2250083 -6.53 0.000 -1.911231-1.029215 _y_c -1.152938 .2422897 -1.627817 _cons -4.76 0.000 -.6780585 _y_D _cons -3.327687 .8504168 -3.91 0.000 -4.994473-1.660901 _y_E cons -1.066367 .1694118 -6.29 0.000 -1.398408 -.7343258

Estimated between-studies SDs and correlation matrix

	SD	_y_B	_y_c	_y_D	_y_E
_y_B	2.246e-07	1			
_y_c	2.246e-07	.5	1		
_y_D	2.246e-07	.5	.5	1	
_y_E	2.246e-07	.5	.5	.5	1

Network forest plot (NFP) 輸入:

network forest

Test of consistency: chi2(8)=4.09, P=0.849

10

Network forest plot (NFP) 輸入:

network forest, msize (*0.15) diamond eform xlabel (0.1 1 10 100) colors (black blue red) list

<diamond> uses a diamond shape to show summary effect sizes

<eform> generates transformed indices to make it easy to interpret the forest plot

■ Network forest plot (NFP) 輸入:

intervalplot

11

12

Network forest plot (NFP) and interval plot 輸入:

intervalplot, eform

ES: effect size

<eform> generates
transformed indices to
make it easy to interpret
the forest plot

Network forest plot (NFP) and interval plot 輸入:

intervalplot, eform null (1) labels (Placebo IV_single IV_double Topical Combination) margin (10 8 5 10) textsize (2) xlabel (0.01 0.1 1 10)

intervalplot, eform null (1) labels (Placebo IV_single IV_double Topical Combination) separate margin (10 8 5 10) textsize (2) xlabel (0.01 0.1 1 10)

<eform> generates transformed
indices to make it easy to
interpret the forest plot

<separate> and < margin>

set the ranges to generate easyto-read plots, the values of which should be appropriately determined by the user

Figure 5. Interval plot. Cl, confidence interval

Step 4: Determining Relative Rankings of Treatments

14

Identify superiority 輸入:

network rank min

network rank min

Command is: mvmeta, noest pbest(min in 1, zero id(study) stripprefix(_y_) zeroname(A) rename(A = A, B = B, C = C, D = D, E = E))

Estimated probabilities (%) of each treatment having each rank

- assuming the minimum parameter is the best

- using 1000 draws

- allowing for parameter uncertainty

		Treatment									
Rank	A	В	С	D	E						
Best	0.0	1.4	0.4	98.1	0.1						
2nd	0.0	81.2	12.5	1.1	5.2						
3rd	0.0	13.4	51.3	0.2	35.1						
4th	0.0	4.0	35.8	0.6	59.6						
Worst	100.0	0.0	0.0	0.0	0.0						

network rank max

network rank max

```
Command is: mvmeta, noest pbest(max in 1, zero id(study) stripprefix(_y_) zeroname(A) rename(A = A, B = B, C = C, D = D, E = E))
```

Estimated probabilities (%) of each treatment having each rank

assuming the maximum parameter is the best

using 1000 draws

- allowing for parameter uncertainty

		Treatment									
Rank	A	В	С	D	E						
Best	100.0	0.0	0.0	0.0	0.0						
2nd	0.0	3.0	33.7	0.3	63.0						
3rd	0.0	13.3	54.2	0.3	32.2						
4th	0.0	82.0	12.0	1.2	4.8						
Worst	0.0	1.7	0.1	98.2	0.0						

Step 4: Determining Relative Rankings of Treatments

Iden

using 10000 draws

15

Identify superiority 輸入:

network rank min, line cumulative xlabel (1/5) seed (10000) reps (10000) meanrank

Treatment Rank D Е 0.0 1.5 0.2 98.3 0.0 Best 2nd 13.7 1.0 5.2 0.0 80.1 3rd 0.0 15.4 50.3 0.3 34.0 60.8 4th 0.0 3.0 35.8 0.4 100.0 0.0 0.0 Worst 0.0 0.0 MEAN RANK 5.0 2.2 3.2 1.0 3.6 0.7 0.4 SUCRA 0.0 1.0 0.4

Estimated probabilities (%) of each treatment hav - assuming the minimum parameter is the best

- allowing for parameter uncertainty

SUCRA: Surface under the cumulative ranking \rightarrow more precise estimation of cumulative ranking probabilities

Step 3: Creating Plots and League Table of Effect Size by Treatment Step 5: Checking for Publication Bias

use "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\112年生統課程規劃\護理部-Stata\Stata-Network meta_new\funnel plot.dta ", clear

Comparative effect size (diff) and standard error (se) for each pair of treatment 輸入:

network forest, msize (*0.15) diamond eform xlabel (0.1 1 10 100) colors (black blue red) list

. network forest, msize (*0.15) diamond eform xlabel (0.1 1 10 100) colors (black blue red) list Warning: inconsistency matrix of fitted values not found - forest plot will be incomplete Listing of results extracted from current data and saved network meta-analyses:

	t1	t2	design	type	studyvar	diff	se
1.	A	в	ABE	study	Barrachina2016	-1.5830047	.62940991
2.	A	в	AB	study	Benoni2000	-1.5224265	.72019919
3.	A	В	AB	study	Ekb2000	0	1.4509525
4.	A	в	AB	study	Fraval2017	-1.8769173	1.0996804
5.	A	в	AB	study	Hsu2015	-1.7917595	.83333333
6.	A	в	AB	study	Husted2003	-1.5781854	.88053153
7.	A	В	AB	study	Lee2013	-1.3783262	.52205333
8.	A	В	AB	study	Lemay2004	-1.6204877	.69403529
9.	A	в	AB	study	Niskanen2005	62415431	.69264847
10.	A	В		cons		-1.4702229	.22500835
11.	Α	с	AC	study	Alshryda2013	-1.1966735	.41343569
12.	A	С	AC	study	Martin2014	6061358	.79296146
13.	A	С	ACE	study	Wei2014	-1.7266202	.47860044
14.	A	С		cons		-1.1529375	.24228968
15.	Α	D	ADE	study	Yi2016	-3.4022721	1.0513314
16.	A	D		cons		-3.327687	.85041684
17.	Α	E	ABE	study	Barrachina2016	71995844	.52625457
18.	A	Е	AE	study	Benoni2001	84729786	.72784745
19.	A	Е	AE	study	Claeys2007	-2.0971411	1.1361016
20.	A	Е	AE	study	Garneti2004	.33420209	.57961088

Step 3: Creating Plots and League Table of Effect Size by Treatment Step 5: Checking for Publication Bias

► Network Funnel Plot 輸入:

17

netfunnel diff se t1 t2, random bycomparison

Thank you for listening Leterans General No.

Faichung

