新生兒持續性肺高壓

Pathophysiology

-failure to make the transition from high pulmonary vascular resistance(PVR) and low pulmonary blood flow to the relatively low PVR and high pulmonary blood flow of postnatal infant

Etiology

Pathology	associated disease	proposed mechanism	prognosis
Functional	acute perinatal asphyxia	response to acute hypoxia	good,
vasoconstriction,	MAS. RDS	particularly in the presence of	reversible
normal vascular	sepsis or pneumonia	acidemia	
development	hypoventilation,		
-	CNS depression, Hypothermia		
	hypoglycemia		
Fixed decreased	placental insufficiency	Response to chronic hypoxia;	poor,
Diameter	prolonged gestation	Excessive pulmonary	fixed structural
Abnormal extension	In utero closure of ductus	blood flow in utero,	lesion
And hypertrophy	arteriosus(aspirin, NSAID)	Elevated pulmonary venous	
of distal pulmonary	single ventricle without PS	pressure	
vascular smooth	chronic pulmonary venous H/T		
muscle	(RAPVR, obstructive left-side heart	disease)	
Decreased cross-section	nal space-occupying lesion	hypoplasia of alveoli and	poor, fixed
area of the pulmonary	(CDH, lung dysgensis,	associated vessles	structural lesion
vascular bed	pleural effusion) congenital lung		
	hypoplasia(Potter syndrome,		
	thoracic dystrophies)		
Functional obstruction	to polycythemia	increased blood viscosity	Good,
pulmonary blood flow	hyperfibrinogenemia		unless chronic

Diagnosis

- 1. History
 - □ 中、Prenatal history:IUGR, oligohydramnio, pleural effusion, maternal drug history(aspirin, indocid), space occupying lesion(CDH, lung cyst)
 - \angle Birth history: asphyxia, MAS
 - 丙、Postnatal history: sepsis, pneumonia, airway obstruction
- 2. clinical presentation:
- 3. Examination
 - ₱ 、 ABG: very low PO2 and SatO2 despite high FiO2; preductal PO2-postductal PO2≥15~20
 - \angle \cdot Heart Echo:
 - i. Firstly, cyanosis CHD must be ruled out
 - ii. R to L(or bidirect) shunting at foramen ovale and/or PDA
 - iii. TR with pressure gradient \geq 40mmHg
 - iv. Deviation of intra-atrial septum into the L't atrium

- 丙、Distinguish with lung parenchymal disease and cyanotic congenial heart disease
 - i. Hyperoxia test: expose to 100% O2 for 5-10min→PO2 increase to<20mmHg
 - ii. Hyperventilation-hyperoxia test: expose to 100% O2 and RR
 100~15-/min→PO2 increase at critical PCO2, often to <25mmHg

Assessing clinical severity

1. Alveolar-arterial oxygen gradient(AaDO2)

甲、AaDO2=760-47-(PaCO2/R)-PaO2

- 乙、When FiO2=1.00→ R(呼吸商)≒1
- 丙、If AaDO2>620→severe
- 2. Oxygen Index(O.I)
 - ♥、O.I= MAP*FiO2(%)÷postductal PaO2
 - \angle MAP= mean airway pressure
 - 丙、If O.I >40→severe

Treatement

- 1. iNO
 - eta \cdot if iNO is available, it is the first choice
- 2. Alkalosis
 - 甲、Keep PH 7.5-7.55(reach this PH within 30-60min)
 - \angle > NaHCO3: about 1mEq/kg/hr; adjust by the PH of ABG
 - 丙、Taper: when PPHN improved ----1→0.5→0.25→0 mEq/kg/hr depend on the PH of ABG
 - 丁 丶 F/U ABG, Na
- 3. HFOV
- 4. surfactant
 - 申、indication: CXR showed RDS pattern and surfactant deficiency; PaO2<80mmHg under FiO2>40%
 - \angle \cdot Dosage: 4cc/kg/dose
- 5. inotropic agent
 - 甲、indication: MBP<GA(preterm) or SBP<60mmHg(term)
 - \angle > Dobutrex: about 5-20ug/kg/min
 - 丙、Dopamine: keep urine output, about 1-2ug/kg/min; At RDS, try dopamine firstly, 5-0ug/kg/min
 - ⊤ 、 Epinephrine: 0.1ug/kg/min
- 6. correct underlying disease

- 7. supportive care
 - 甲、set IV, ETT, A-line(UA), UV as soon as possible, complete all procedures within 30-60min
 - \angle \cdot correct hypoglycemia, hypocalcemia, systemic hypotension and acidosis
 - 丙、minimal handling
 - \Box 、 F/U ABG, Ca, Glu, Hgb, Na
- 8. Sedation
 - $\boxplus \mathsf{`Not routine}$
 - \bigtriangleup \cdot Indication: irritable and fighting with ventilator while no other cause could be traced
 - 丙、: Drug: dormicum

Reference

- 1. neonatology, pathophysiology&management of the newborn, 5th ed, Avery
- 2. Avery's disease of the Newborn, 7th ed