

The Multi-faceted Assays Enabled with Cytation 5 Technology

An Advanced Tool for Smarter Target-Based, Phenotypic Research & Screening

試機時間 11 月 2 日~11 月 13 日 臺中榮民總醫院 5F 醫學研究部精密儀器中心

BioTek

Target vs Phenotypic Research & Development

Target-based Research

- Initial Target ID and Validation studies are critical for efficacy
- Assay development for screening focuses on drug interaction with target
- Screening hundreds of thousands of compounds is relatively easy

Phenotypic Research

- Use a phenotype model for the disease no specific drug target
- Assay development for screening focuses on phenotype suppression
- Screening hundreds of thousands of compounds is relatively difficult

Example: Angiogenesis in Cancer: Tumor growth requires blood vessel development (angiogenesis).

- Establish that VEGF binding to VEGFR induces blood vessel growth
- Develop assay that monitors binding to VEGF receptors
- Develop assay that monitors blood vessel growth

... need/desire to perform both types of screens to generate accurate in-vivo-like results

BioTek

Microplate Reader with Imaging

Fuller picture for cell biology research

	1	2	3	4	5	6	7	8	9	10	11	12
А	0.250	0.262	0.281	0.258	0.257	0.243	0.266	0.248	0.259	0.262	0.261	0.262
в	0.269	0.274	0.282	0.264	0.278	0.274	0.271	0.273	0.272	0.271	0.270	0.267
С	0.268	0.273	0.274	0.272	0.268	0.269	0.297	0.269	0.272	0.273	0.273	0.265
D	0.268	0.271	0.282	0.266	0.267	0.276	0.274	0.272	0.273	0.272	0.274	0.277
E	0.268	0.272	0.277	0.273	0.274	0.271	0.276	0.274	0.268	0.272	0.270	0.273
F	0.267	0.274	0.279	0.273	0.274	0.268	0.276	0.272	0.270	0.273	0.274	0.277
G	0.268	0.280	0.284	0.270	0.280	0.260	0.277	0.276	0.268	0.272	0.274	0.270
н	0.243	0.258	0.279	0.274	0.278	0.268	0.269	0.276	0.263	0.268	0.248	0.248

Quantitative univariate data

Multivariate data

Traditional Plate Reader - Monochromator

- Quantitative data and flexibility
- Precisely measure cellular activity

	1	2	3	4	5	ы	1	8	y	10	11	12
А	0.250	0.262	0.281	0.258	0.257	0.243	0.266	0.248	0.259	0.262	0.261	0.262
в	0.269	0.274	0.282	0.264	0.278	0.274	0.271	0.273	0.272	0.271	0.270	0.267
С	0.268	0.273	0.274	0.272	0.268	0.269	0.297	0.269	0.272	0.273	0.273	0.265
D	0.268	0.271	0.282	0.266	0.267	0.276	0.274	0.272	0.273	0.272	0.274	0.277
Е	0.268	0.272	0.277	0.273	0.274	0.271	0.276	0.274	0.268	0.272	0.270	0.273
F	0.267	0.274	0.279	0.273	0.274	0.268	0.276	0.272	0.270	0.273	0.274	0.277
G	0.268	0.280	0.284	0.270	0.280	0.260	0.277	0.276	0.268	0.272	0.274	0.270
Н	0.243	0.258	0.279	0.274	0.278	0.268	0.269	0.276	0.263	0.268	0.248	0.248

BioTek

Variable Bandwidth Monochromators: Fluorescence

Wavelength Selection

- Range 250 nm to 750 nm
- Select bandwidth from 9 nm to 50 nm, in 1 nm increments

wavelength

BioTek

Variable Bandwidth Monochromators: Fluorescence

Selectable Bandwidth Benefits

- Allows optimization of detection conditions for fluorophores, e.g. narrow stokes shift fluorophores
- Better performance compared to conventional monochromators

wavelength

Traditional Plate Reader - Filters

- Quantitative data and sensitivity
- Precisely measure cellular activity

A	0.250	0.262	0.281	0.258	0.257	0.243	U.266	0.248	0.259	0.262	0.261	0.262
в	0.269	0.274	0.282	0.264	0.278	0.274	0.271	0.273	0.272	0.271	0.270	0.267
С	0.268	0.273	0.274	0.272	0.268	0.269	0.297	0.269	0.272	0.273	0.273	0.265
D	0.268	0.271	0.282	0.266	0.267	0.276	0.274	0.272	0.273	0.272	0.274	0.277
Е	0.268	0.272	0.277	0.273	0.274	0.271	0.276	0.274	0.268	0.272	0.270	0.273
F	0.267	0.274	0.279	0.273	0.274	0.268	0.276	0.272	0.270	0.273	0.274	0.277
G	0.268	0.280	0.284	0.270	0.280	0.260	0.277	0.276	0.268	0.272	0.274	0.270
Н	0.243	0.258	0.279	0.274	0.278	0.268	0.269	0.276	0.263	0.268	0.248	0.248

12

BioTek

Filter Module: Very High Optical Efficiency

- Light source and PMT are directly coupled with a cube that contains filters and dichroic mirrors
- No-fiber system allows using a fairly small light source with very high efficiency: low-cost, high-performance system
- Filter cube arrangement is similar to system found in fluorescence microscopy: extremely easy-to-use

BioTek

Filter Module: 2 Filter Sets per Cube

One filter cube ships with the F module:

- Default is 360/460 and 485/528 filter sets
- High-performance dichroic-based optics
- Can be customized per customer requirements
- Additional cubes can be ordered

BioTek

Laser-based Excitation: Alpha Assays

Powerful 100 mW laser provides best sensitivity and high read speeds

Imaging Optical Path

- Qualitative and Quantitative data
- Characterize change in phenotype

BioTek

Microplate Reader Optics with Imaging

BioTek

Cytation 5 Modularity & Upgradeability

- CYT5M
- CYT5F
- CYT5FA
- CYT5V
- CYT5PV
- CYT5MF
- CYT5MFA
- CYT5MFV
- CYT5MV
- CYT5MPV
- CYT5FV
- CYT5FAV
- CYT5MFAV

- M Quad Monochromator Optics
- F Filter-based Optics
- V Imaging Optics
- A AlphaScreen Laser Optics
- P Phase Contrast Optics
- FA Additional Options:
 - CO₂ Gas Controller
 - O₂ / CO₂ Gas Controller
 - Dual Reagent Injectors -
 - Joystick Controller -
 - BioStack4 ~

- Without a structure

BioTek

Cytation 5 Detection Modes

- UV/Vis Absorbance
- Fluorescence Intensity (top & bottom)
- Luminescence (glow & flash)
- Filtered Luminescence, e.g. BRET, BRET²
- Heterogeneous TRF
- Homogenous TRF (TR-FRET)
- Fluorescence Polarization
- AlphaScreen[®] & AlphaLISA[®]
- Fluorescence Imaging
- Color Brightfield Imaging (H&E)
- Brightfield Imaging
- Phase Contrast Imaging

BioTek

Gen5 Data Analysis Software: Powerful Functionality

- Results gradient
- Area scan
 Spectral scar

Curves

Spectral scan

BioTek

4-Zone[™] Temperature Control: With Condensation Control Mode

- Proven natural convection incubator design:
 - Provides precise temperature control in the entire reading chamber
 - "Fan-free" design helps prevent edge effect common in other systems
- Condensation control mode option
 - Set the top heaters slightly higher than bottom heaters when using lidded plates
 - Even during long-term incubated kinetics, there is no condensation, so measurements aren't affected
- Excellent uniformity +/- 0.5 °C @ 37 °C

Top zones set higher for condensation control

BioTek

Advanced Shaking

• Three shake movement profiles to suit multiple applications:

Orbital shaking prov

Linear shaking provides strong agitation in the well, ideal for maximum mixing for non-cell based assays Orbital shaking provides gentle yet thorough mixing, ideal for cellbased assays where cell disruption should be minimized Double-orbital shaking provides strong agitation multi-directional shaking, good for mixing to prevent cell clumping

Automation

- Compatible with automated systems
- Cytation 5 presents microplates in portrait orientation
- Compatible with BioStack 4
 - De-lidding and re-lidding capability for 96-, 384- and 1536-well plates
 - Stacking of 24- to 1536-well plates

BioTek

More and More Assays are Run on Live Cells

Cytation 5 live cell features:

- Temperature control up to 65 °C
- Gas controller (CO_2 / O_2)
- Automatic reagent dispenser

Example Applications:

- Calcium signaling
- Enzymatic activity
- Metabolic activity
- Mitochondrial membrane potential
- Oxidative burst
- Receptor binding
- Live Cell assays
- Cell migration
- Hypoxia & Oxidative stress
- Cell cycle analysis

BioTek

Imaging Basic Specifications

- Matched LED light source and filter cube assemblies
- 4 filter cube onboard capacity: RGB, plus several other colors
- Six objectives onboard capacity: 1.25x, 2.5x, 4x, 10x, 20x, 40x and 60x
 : 4x, 10x, 20x and 40x phase
- Read modes: End point / Time lapse / Montage
- Labware: 6- to 1536-well microplates

Microscope slides / chamber slides

Cell Counting Chamber

T25 flasks

Petri dishes

- AutoFocus, AutoIntensity, AutoExposure
- Software controlled microscopy
- Gen5 reader control and data reduction software

BioTek

Labware: Multi-Vessel Compatibility

- 6- to 384-well microplates (up to 1536-well for imaging)
- Microscope slides / chamber slides
- T25 flasks
- 100, 60 and 35 mm Petri dishes
- Cell Counting Chamber
- Take3 & Take3 Trio

BioTek

Imaging Optical Path

BioTek

High Quality Optical Components

- Semrock filters
- High power LEDs
- Zeiss & Olympus objectives
- I6-Bit CCD camera with Sony chip

365 LED 1225000

BioTek

Imaging Filter Cube Options

Description	P/N	Excitation	Emission	Mirror	P/N	LED
DAPI filter cube	1225100	377/50	447/60	409	1225000	365 nm
TagBFP filter cube	1225115	390/18	447/60	409	1225009	390 nm
CFP filter cube	1225107	445/45	510/42	482	1225001	465 nm
GFP filter cube	1225101	469/35	525/39	497	1225001	465 nm
YFP filter cube	1225104	500/24	542/27	520	1225004	505 nm
CFP-YFP FRET filter cube	1225110	445/45	542/27	482	1225001	465 nm
RFP filter cube	1225103	531/40	593/40	568	1225003	523 nm
Phycoerythrin filter cube	1225113	469/35	593/40	568	1225001	465 nm
Texas Red filter cube	1225102	586/15	647/57	605	1225002	590 nm
Propidium lodide filter cube	1225111	531/40	647/57	605	1225003	523 nm
Acridine Orange filter cube	1225109	469/35	647/57	605	1225001	465 nm
CY5 filter cube	1225105	628/40	684/40	660	1225005	623 nm
Chlorophyll filter cube	1225112	445/45	685/40	482	1225001	465 nm
CY5.5 filter cube	1225114	647/57	794/160	695	1225008	655 nm
CY7 filter cube	1225106	716/40	809/81	757	1225006	740 nm

BioTek

Objective Specifications

	Numerical Aperture	Resolution (nm)*	Depth of Field (µm)*	Working Distance (mm)	
1.25x	0.04	4400	300	5	
2.5x (2.25 x eff)	0.07	2500	132.2	5.7	
2.5x (2.75x eff)	0.12	1458	50.7	6.3	
4x	0.13	1346	38.9	17	
Phase 4x	0.13	1346	38.9	17	
10x	0.3	583	7.1	10	
Phase 10x	0.3	583	7.1	10	
20x	0.45	388	2.9	6.4 - 7.6	
Phase 20x	0.45	388	2.9	6.4 - 7.6	
40x	0.6	291	1.5	2.7 - 4.0	
Phase 40x	0.6	291	1.5	2.7 - 4.0	
60x	0.7	250	1.1	1.5 - 2.2	

* Example is for blue (DAPI) at 350 nm

BioTek

Fluorescence Imaging

• 3-color image (blue, green red)

- 20x objective
- Images are acquired in sequence in gray scale
- Artificial color scale is applied to each color channel
- Finally, the 3 images are overlapped
- Used for quantitative measurements

FluoCells® is a registered trademark of Molecular Probes, Inc.

BioTek

Brightfield Imaging

- Simple, gray scale image shows OD image
- Can be used for quantitative analysis, e.g. cell counting

BioTek

40x & 60x Example Applications

- 40x: Olympus, 2.7 mm working distance, 0.6 NA
- 60x: Olympus, 1.8 mm working distance, 0.7 NA
- Imaging yeast and bacteria
- Imaging smaller cellular structures, e.g. mitochondria
- Resolution at 60x and 500 nm is about 350 nm (0.35 µm)
 - 500 / 2 x 0.7 (wavelength / 2 x NA)

0 0 Yeast – Brightfield at 40x 100 µm

CFP Expressing Yeast – 40x

BPAE cells (DAPI, GFP, Texas Red) – 60x

Imaging & Microscopy: Z-Stacking, Z-Projection

Z-Stacking

Z-Projection

BioTek

Imaging & Microscopy: Time Lapse

BioTek

Imaging & Microscopy: Montage and Stitching

Imaging & Microscopy: Digital Phase Contrast

Digital Phase Contrast

BioTek

Gen5 Interface

Analyze Too				
nalysis :	Cellular Analysis 🔻 💌	Detection Channel: Blue		
A	nalysis settings	Parameters Options		
	ecult options	Threshold: 12000 Min. Object size: 10 µm ♥ Split touching objects		
	START	Max. Object size: 100 µm V Include edge objects		
1 10x	·			
Mouse XY:	?,? 🔳 1:1 🖸		Results:	
Image Collec	tion		Name Value	
SHOW:			Threshold 12000	
4243			Cell Count 50	
1000			Object Size 30.9	-
			Object Area 740	
			Object details:	[
			# Size Circularit Area Pe	er IBlue] IBlue
			1 13.4 0.0433 80.6	51.1 19847 2594
Histogram			2 30.3 0.894 721 1	01.1 28845 4233
1			3 31.4 0.791 773 1	04.9 29164 4401:
			4 24.7 0.396 455	87.0 26751 3704
			5 33.0 0.61 843 1	09.8 36052 5714
-			6 31.3 0.169 634 1	09.1 25213 3863(
			7 28.1 0.693 617	91.8 29079 4643:
Save	Close		8 31.6 0.776 779 1	03.9 25475 3626
			9 31.1 0.757 758 1	05.3 32384 4590.
			10 31.5 0.354 731 1	04.6 23984 34218
		200		30.6 35263 6454
				19.0 32244 5502
	Highlight			14 7 37166 6207
		Highlight objects	15 29 9 0 445 673 1	08.7 25230 38090
		pixels		
		outiers	·	
			Add image set	all Help

Gen5 automates cell counting and sub-population analysis in an uncluttered, easyto use interface.
BioTek

Image Analysis Can Be Very Complex

- <u>One-click</u> cell counting tool
- Designed for users with no image analysis experience

BioTek

Software Interface

- Gen5 is BioTek's interface for plate readers
- Our new imager takes advantage of 30 years of plate reader software development.
- Interface allows to:
 - Control the device to automate simple or complex processes
 - End point, kinetic...
 - Multiplex imaging and plate reading steps
 - Analyze the data
 - Automatically export raw and calculated data to Excel or text file if required.

BioTek

Image Analysis

- Simple image analysis is included in the software
 - Image statistics
 - Cell counting using cell nuclei
 - Sub-population analysis using cell-count mask
- Output can then be processed as standard microplate data for more complex data reduction (e.g. EC₅₀, potency...)
- Images are saved in universal format for further analysis using other software packages if needed (Image J, Cell Profiler, MetaMorph, CombineZP...)

BioTek

Improve Sensitivity with Imaging: Plate Reader vs. Microscope

	Plate R PMT (eader RFU)	Microscope CCD Camera (Cell count)			
	Well value	S/B	Well value	S/B		
Negative control	19556		1			
Positive control	45029	2.3	2668	2668		
Sample	24118	1.2	104	104		

BioTek

Cytation 5 Unique Feature: Hit Picking

- 1. Plate is pre-screened with plate reader optics (<1 minute)
- 2. Only hit wells are imaged
- 3. Significantly faster, with fewer images to process and store
 - (one 96-well plate with one image per well = 200 MB)

Applications

Early microscope

HTRF[™] IL-6 and Nuclear-ID[™] Cell Viability Assays

Assessment of IL-6 Secretion and Cell Viability using Microplate Reader and Cell-Based Imaging Technologies

BioTek

Multiplexed Assay for IL-6 secretion and Cell Viability

- Endothelial Ovarian Cancer Cell Line: SKOV-3
- IL-6 secretion induced by EGFR activation of NFkB pathway
- IL-6 quantified by 2-step HTRF assay through plate transfer
 - Top read, spectral filters / dichroic
- LIVE/DEAD assay performed on cells post-transfer step
 - Bottom read, digital fluorescence microscopy

BioTek

IL-6 secretion – 48 hr incubation

BioTek

Toxicity Assessment of AG 1478 using LIVE/DEAD Probes

- 4x images of LIVE (blue) and DEAD (red)
- [AG 1478] ≈ IC₅₀: 5.5% DEAD cells
- [AG 1478] = 5 μM: 94.3% DEAD cells

BioTek

Toxicity Assessment of All Inhibitors using LIVE/DEAD Probes

BioTek

Validation of Cetuximab Binding by 20x Imaging

Green Fluorescent Protein (GFP) Transfection

Assessing GFP Gene Delivery using Cellular Imaging and Microplate Reader Technologies

BioTek

Transfection Efficiency Assessment Procedure

- NIH3T3 (mouse embryo fibroblast) cell model
- 20,000 cells in total added per well
 - Combination of NIH3T3-GFP and NIH3T3 cells
 - Different combinations added to mimic multiple transfection efficiencies
- Cell-permeable Hoechst 33342 nuclear stain added to identify complete cell population
- 4x and 20x fluorescence microscopy images captured to assess theoretical transfection efficiency
- Top read, whole well fluorescence measurements made for validation purposes

BioTek

Analysis of Transfection Efficiency using Gen5 Software

Cell count feature in Gen5 software used to determine cell number transfected and total cell count

4x images taken every 2 hours

- Cellular expression of GFP fusion protein visible via fluorescence as soon as 6 hours
- Maximum expression reached between 16 and 20 hours

BacMam Transfection

Assessment of Transient Histone H3-GFP Gene Delivery using Cellular Imaging and Microplate Reader Technologies

BioTek

BacMam Transfection Optimization Procedure

- U-2 OS (human osteosarcoma) cell model
- Viral concentration and incubation time optimization performed
 - Multiple concentrations of Histone H3 virus transfected into cells, ranging from 0-50%
 - Kinetic reads carried out using Cytation3 over 24 hours using stable 37 °C/5% CO₂ atmosphere
- Cell-permeable Hoechst 33342 nuclear stain added following BacMam incubation to identify complete cell population
- 4x and 20x fluorescence microscopy images captured to assess appropriate viral incubation time, transfection efficiency, and cytotoxicity
- Top read, whole well fluorescence measurements made for validation purposes

BioTek

BacMam Transfection Time Course Study

2hr	4hr	6hr
8hr	10hr	1.2hr
14hr	1.6hr	18hr
20hr	22hr	24hr

- U-2 OS cells infected with 7.5% virus concentration
- 4x images taken every 2 hours
- Cellular expression of GFP fusion protein visible via fluorescence as soon as 6 hours
- Maximum expression reached between 16 and 20 hours

BioTek

Assessment of BacMam Viral System Fluorescence

- High green fluorescent background signal seen at 2 hour time point
- Time zero whole well fluorescent reads confirm signal linked to viral introduction
- Background fluorescence drops over time, as seen from 4x images and subsequent image analysis
 - Indicative of viral uptake into cells and nuclear localization

BioTek

Transfection Optimization-Top Read

- Fold change generated by comparing top fluorescence reads of GFP signal
- Optimal incubation time seen to be 16 hours with all viral concentrations tested
- 12.5% concentration seen to give largest fold change
 - Higher viral concentrations may be toxic to cell model

BioTek

Optimal Transfection Efficiency Determination-Imaging

- Imaging plus automated cell count feature used to quantify number of cells transfected (green) as well as total cell number (blue)
- Graph of cell number ratio also confirms optimal viral concentration to be 12.5%

10

100

Cell Migration

Exploring Cell Movement

BioTek

Platypus Oris[™] &Oris[™] Pro Cell Migration Assay

BioTek

Cell Migration Assay Workflow Cell Preparation HT1080 cells MDA-MB-231 GFP Harvest cells Resuspend in phenol/serum free media **Resuspend in phenol free media + FBS** Add Cell Tracker Green CMFDA dye Plate 20 or 90 µL cells (96- or 384-well, respectively) and briefly centrifuge Incubate 37 °C with stirring 3X10 min. Incubate 37 °C, 5% CO₂ for 1-4 hours* Wash cells with phenol/serum free medium Add 20 or 10 uL compound or control Incubate 37 °C with stirring 3X10 min. (96- or 384-well, respectively Image wells w/ Cytation 3 in kinetic mode w/5% CO2 @ 37 °C Ж

Resuspend cells in phenol free medium + FBS

BioTek

Methods of Image Analysis

- Gen5 utilizes mask to define cell free zone for GFP intensity analysis
 - Reader control and data analysis

- Area of coverage can be measured in Gen5
 - Plug and threshold

*BioTek

Plate Layout

Plate Layou	ut													
ielect a Well ID in the li	st on the left, t	hen assign	to the ma	atrix.			E I		7	0	0	10	4.4	10
Add	Delete		4	2	3	4	5	ь	1	8	9	10	EE	12
Sample Sample SPL1 (x24) 1000 (x3) 333.3 (x3) 111.089 (x3) 37.0259 (x3) 12.3407 (x3) 4.11317 (x3) 1.37092 (x3) 0 (x3) SPL2 1000 333.3 111.089 37.0259 12.3407 4.11317 1.37092 0	A			SPE1:1	1000	SPL1:1			-					
	В			SPL1:2 333.3	SPL1:2 333.3	SPL1:2 333.3								
	С			SPL1:3 111.09	SPL1:3 111.09	SPL1:3 111.09								
	D			SPL1:4 37.026	SPL1:4 37.026	SPL1:4 37.026								
	E			SPL1:5 12.341	SPL1:5 12.341	SPL1:5 12.341								
	F			SPL1:6 4.1132	SPL1:6 4.1132	SPL1:6 4.1132				-				
	G			SPL1:7 1.3709	SPL1:7 1.3709	SPL1:7 1.3709								
	Н			SPL1:8 0	SPL1:8 0	SPL1:8 0			27					
		Serial Assignment Replicates: 3												
		Ve Ne	ext Conc. Ito Select I	Next ID					L	mporc			Cancel	Help

BioTek

Gen5 Data Analysis: 2 Ways to Set up Statistical Analysis

Gen5 data reduction step

Data Reduction Tools	Description	Data	Out Con	nments		
Transformations	Image Statis	ics Mean	Mean[GFP 469,525], St			
Blank Normalize Ratio	- Kinetic Analy	sis Max V	/[Mean [GFP 469,5			
Delta	Imag	ge Statistics				
Polarization	Label	<pre>cdefault></pre>				
Custom Woll Analycic	Data					
Kinetic		GFP 469,525		Read(s) All		
spectral Scan Area Scan Linear Scan Image Analysis		Lower value: 10000 Upper value: 65534				
Statistics Cellular Analysis C urve Analysis	Plug	k g shape: Disc	×			
Standard Curve Dose Response - EC50	Sha	pe size: 1400	μm			
Custom - PLA	Selec	t the data to show:		·		
Qualitative Analysis / QC	3	Data	Format	Color Effect		
Cutoff Validation		Mean	<decimal,0></decimal,0>	<blue scale=""></blue>		
Z Prime		Min	<decimal,0></decimal,0>	<blue scale=""></blue>		
		Max	<decimal,0></decimal,0>	<blue scale=""></blue>		
		Std Dev	<decimal,0></decimal,0>	<blue scale=""></blue>		
		cv	<decimal,3></decimal,3>	<none></none>		
		Saturated Pixels Pct	<decimal,3></decimal,3>	<none></none>		
		Focal Height	<decimal,3></decimal,3>	<none></none>		
		the second	and the second second second second second			

BioTek

Gen5 Data Analysis: 2 Ways to Set up Statistical Analysis (Cont.)

Use of analyze tool from picture view

BioTek

Statistical Analysis of MDA-MB-231 Cells: Standard Deviation

BioTek

ImageJ Data Analysis: Portability of Cytation 3 Imaging Data

- Several software packages are available for image analysis
- ImageJ open source software: <u>http://rsbweb.nih.gov/ij/</u>
 - ImageJ is written in Java, which allows it to run on Linux, Mac OS X and Windows, in both 32-bit and 64-bit modes

BioTek

ImageJ Analysis

- 1) Open image
- 1) Adjust threshold to increase contrast
- Use magic wand tool to select area
- 3) Select measure to calculate area

ImageJ Analysis

333 nM

1000 nl

Comparative Analysis

3D Cell-Based Imaging

Analysis of Single-plane and Z-stacked Tumoroid and Spheroid Images

BioTek

3D Cell Culture...

3D Cell Culture System	Vendor	Scaffold Material	Degradable	Format
Micro-tissues	InSphero AG	No	N/A	Microtissues in 96-well microplates
Spheroids	3-D Biomatrix	No	N/A	Hanging drop microplates, 96-and 384-well densities
AlgiMatrix	Life Technologies	Gelatin, PEG	Yes	Scalable
BD Matrigel	BD Biosciences	Proprietary mixture	Yes	Scalable
RAFT	TAP Biosystems	Collagen	Yes	96-well microplates
Alvetex	Reinnervate	Polystyrene	No	6- to 96-well microplates
MICA 3-D	CellASIC	No	N/A	Microfluidic plate

...driving for greater biological relevance in drug discovery

BioTek

TAP Biosystems RAFT System HCT116 Tumoroid Analysis

- HCT116 cells cultured in T75 flasks
- Cells mixed with collagen mixture, plated, and incubated at 37 °C for 15 mins
- Excess medium removed by proprietary absorbers for 15 minutes
 - Creates a 100 um thick layer of cells and collagen
- Plates incubated for three days to allow "tumoroids" to form within collagen
- Cells stained with nuclear, actin, and cell membrane fluorescent probes
- Pipetting performed manually, however MultiFlo FX also used to automate assay procedures using RAFT system
- Imaging, and cellular analysis performed using the Cytation 3 and Gen5 software
 - Manual imaging performed to capture images
 - Z-stacking also performed using external software
BioTek

RAFT 3D Cell Culture Creation Procedure

The RAFT 3D Cell Culture System. (A) Cell/collagen mix within a microplate well. (B) Specialized RAFT plate showing sterile absorbers. (C) Absorbers remove medium to concentrate the cell/collagen mix. (D) Concentrated cell/ collagen mix. (E) Cell/collagen layer showing absorbed medium. (F) Final cell/collagen layer in the microplate well prior to dispensing fresh cell medium.

Tumoroid Image

Objective: 20x

Cell Stains:

Green – Alexa Fluor 488

Red – CellMask Orange Plasma Membrane Stain

BioTek

Z-Stacking Procedure

- Manual images are captured with the Cytation 3 using the same exposure settings and X and Y position
- Individual color images saved as 16-bit .tif files
- Z-stack captures images on multiple planes, Gen5 processes based on user-specified selections
- Gen5's z-projection processes stacked images into a compiled 3D image
- Image and cellular analysis performed on individual 'slices" or on the zprojection
- Compatible with both endpoint and kinetic (time lapse) read modes

BioTek

Other Software with Z-Stacking Capability

- If further z-stack tools are needed, other options are available:
 - Adobe Photoshop (proprietary)
 - ALE (GPL/open source)
 - Enfuse (combined with align_image_stack or similar. GPL/open source)
 - Stack Focuser (GPL/open source)
 - Tufuse ("Freeware")
 - ImageJ (GPL/open source)
 - Combine ZP

BioTek

Single Plane Tumoroid Image (20x Objective/DAPI Channel)

🛢 Gen5 - Imager Manual Mode - [Gen5]		R BBC	
File Take3 System Help		Channel: DAPI	Auto
😫 🔒 🛯 🎒 🍪 📟 227 🖕		Brightness:	Neutral
D1 20× (4) D1 20× (2) D1 20× (3) D1 20× (5)		Contrast:	Reset
🔤 1:1 🔍 🖓 💌 💽 🕁 🛛 छ 🖻			Mouse XY: ?,?
			Image Collection Show: ♥DAPI 9334
		24	Histogram
			ANALYZE Save Close
×		4	
Show seturated pixels	the star	100 μm	
			Capture new Close all

BioTek

Single Plane Tumoroid Cell Analysis Parameters

Analyze Tool		Advanced Options		×	
halysis : Cellular Analysis V R Detection Ch Analysis settings Result options START D1 20x (4) D1 20x (2) D1 20x (3) D1 20x (5)	hannel: DAPI s 2000 Min. Object size: 3 µm Max. Object size: 25 µm	Evaluate ba icons Split touching objects Include edge objects Evaluate ba Image smooth Background fi	ckground on: 5 % of lowest pixels ing strength: 0 Cycles of 3x3 average attening size: Auto 10 µm (Rolling Ball diamete	filter r)	
Mouse XY: 359,18			OK Cancel Name Threshold Cell Count Object Size Object Area Object Perimeter Object Object Area	Value 2000 217 8.7 68.3 35.8 0.502	
Histogram Save Close	✓ Highlight objects	G G G G G G G G G G G G G G G G G G G	Object details: # Size Circular. 1 5.8 0.0624 2 11.2 0.457 3 8.3 0.307 4 4.4 0.792 5 6.6 0.292 6 11.7 0.457 7 12.6 0.42 8 15.0 0.684 9 7.2 0.438 10 9.4 0.5 11 6.2 0.746 11 3.8.3 0.307 13 18.2 0.348 10 9.4 0.5 11 6.2 5.7 0.517 13 18.2 0.348 15 7.9 0.35 16 3.6 0.963 17 9.5 0.576 18 5.8 0.795 12 19.3 0.422 20 14.4 0.414 21.9 0.504 22	Area Perm 16.8 20.7 94.6 44.2 15 14.8 31.5 27.5 95.6 47.6 95.6 47.6 95.6 47.6 95.6 47.7 38.9 28.9 68 40.6 242 68.0 147 49.2 45.1 31.7 10.1 12.0 70.2 35.6 26.6 22.0 9.01 12.7 161 54.5 24.2 53.6 25.6 24.2 67.6 34.6 10.7 48.7 51.1 29.2 99.3 41.4 100 43.4 99.3 41.4 100 43.4	Image Image 4ean Peak [Int. 26643 33261 35945 49398 3 21369 29488 1 25514 34323 27234 30976 i 18439 30541 1' 28035 41270 3 38406 51453 6! 21677 27434 1 20577 27434 1 20577 34506 3 26528 37274 1 24828 34506 3 26528 37274 1 24441 2160 : 27893 36874 : 27893 36874 : 27893 36874 : 27893 36874 : 21828 35376 2 30437 34822 21828 35376 2 304
		Add i	mage set	Close	all Help

BioTek

Z-stacked Tumoroid Image (20x Objective/DAPI Channel)

BioTek

Z-stacked Tumoroid Cell Analysis Parameters

nelysis : celular Analysis extings Result options START	vanced Options	
Mouse XY: 7,7 ■ 1.1	Evaluate background on: 3 % of lowest pixels Image smoothing strength: 0 Cycles of 3x3 average filter Background flattening size: Auto 30 µm (Rolling Ball diameter)	
Histogram Save Close	OK Cancel Help Name Value Threshold 2000 Cell Count 328 Object Size 28.1 Object Area 650 Object Perimeter 115.1	
	Object Class Josef 0.E14 Object details: # Size Circul Area Perim 1 24.5 0.874 469 116. 2 18.9 0.455 271 76. 3 39.8 0.493 1.21E4003 147. 4 31.6 0.396 742 111. 5 20.8 0.674 305 71.7 6 2.84 0.414 605 107.7 7 20.6 0.779 333 807. 8 20.3 0.561 317 73. 9 19.3 0.301 268 664 10 17.0 0.475 219 807. 10 17.0 0.475 219 807. 11 31.3 0.211 664 112. 12 16.2 0.479 199 73.	Mean Peak [. 1 23294 33536 1 22523 27648 9 32101 51200 8 21663 30464 9 25774 38400 3 22271 30976 3 42957 57344 6 22156 26368 6 13611 17408 1 29346 38404 3 28727 48384
- Highlight	300 μm μ 10.2 10.71 1.12 20.2 0.54 2.11 2.02 0.54 2.11 3.02 1.14 3.20 0.797 846 150.7 15 5.2.2 0.564 2.11 10.7 1.5 5.2.2 0.564 2.11 10.7 15 5.2.2 0.564 2.11 10.7 1.1 10.7 1.1 10.7 1.1 10.7 1.1 10.7 1.1	20148 33792 5 26715 43776 4 28367 44032 7 20615 3528 1 40490 46336 7 22670 31232 9 17859 21248 5 28767 48640 3 32650 51968 7 26103 38400 8 1424 56576 3 31918 46592 7 19348 28160
Saturated pixels ☐ Threshold outliers	27 15.7 0.262 174 81. 28 19.1 0.757 286 73.	4 12681 15104 4 22674 31744

BioTek

Cell Cycle Analysis

BioTek

Cell Cycle Analysis: DNA content

BioTek

Cell Cycle Analysis: FUCCI dyes

BioTek

Cell Cycle Imaging to Study Mitosis

- PtK2 cell line derived from male rat-kangaroo epithelial kidney cells
 - Relatively large cells
 - Small number of chromosomes
 - Cells remain flat during mitosis
 - Most adherent cell types tend to round up making mitosis hard to visualize
- Labeling:
 - Anti-tubulin mouse monoclonal primary
 - Alexa 488 secondary goat anti-mouse
 - DAPI
 - Texas Red phalloidin
- Cells were imaged at varied time points at 20, 40 or 60x to visualize different stages of cell cycle

PtK2 Rat-Kangaroo Epithelial Kidney Cells 20x

PtK2 cells 60x Metaphase

PtK2 cells 60x Late Metaphase

PtK2 cells 40x Early Anaphase

PtK2 cells 40x Late Anaphase

PtK2 cells 60x Cytokinesis

PtK2 cells 40x G2

Color Brightfield Histology

Tissue Staining

BioTek

Color Camera

- Uses a monochrome (gray-scale) sensor
- Gets color information by applying a color filter array (CFA)
 - typically the CFA is the Bayer pattern
- CFA and Monochrome sensor makes a "Color Camera"
- To create a color image, a single exposure is taken
 - sampling of only one of the primary red, green or blue colors at each pixel location.
- Two un-sampled colors are then interpolated from adjacent pixels that have values for the color being calculated.
- To construct a color RGB image from this sampling method, 66% of the intensity values must be calculated.

BioTek

BioTek Approach to Color

- Sequentially capture a red image, a green image and a blue image without filters by using sequential Red/Green/Blue LED illumination.
- Three sets of image data are then combined pixel by pixel to provide RGB sampled color at each pixel location.
 - Advantage: Each pixel samples all colors (Red/Green/Blue) so no interpolation

BioTek's Color Brightfield Optical Path

BioTek

BioTek Approach to Color

- Significant Benefits:
 - Monochrome camera supports fluorescence AND color
 - Less hardware, cost, maintenance
 - Increased resolution in final image
 - 3 separate color channels for image analysis

Hematoxylin and Eosin (H&E) Staining

H&E stained tissue from (A) **normal kidney** and (B) **chronic nephritis kidney**. Images represent a stitched 12 x 8 montage made using a 60X objective. Scale bar represents 200 µm.

Range of Magnification

Fixed and stained tissue slice of human intestinal wall immobilized on a 1° x 3° slide was imaged with the 2.5X and the 60X objectives to generate a 12 x 8 montage.

Range of Magnification

2.5>

20X

10X

AX

BioTek

Intrinsic color can be faithfully rendered ...

20x Imaging

- A. H&E-stained tissue
- B. Cerebellum tissue
- C. Bean root
- D. Hydrilla verticillate leaf

Use of other Colorimetric Stains

Mouse Lung tissue stained using various methods. Lung tissue was stained using:A) HRP antibody conjugate reacted with DAB to form a brown reporter colorB) H&E dyes

C) Alkaline Phosphatase conjugate reacted with AEC to form pink products

BioTek

Young Mouse with Internal Organs (2.5x Color Brightfield Montage)

Apoptosis Phenotypic Assay

Phase Contrast

BioTek

BioTek

Phase Contrast: Image Analysis Benefit

- Line profile tool comparison of the same spots visualized in Phase Contrast and Brightfield
- Much higher signal to noise in Phase Contrast allows for better Image Analysis of spots

BioTek

Phenotypic Assay: Oridonin-induced Apoptosis:

- MDA-MB-231 cells
- 6 hr incubation
- 20x Phase

... phenotype of cell rounding easily visualized by phase contrast
BioTek

Quantifying the Cell Rounding Phenotype

- 6 hr incubation
- 4x Phase
- Threshold 6,000 RBU
- Min. Object Size 10 µm
- Max. Object Size 40 µm
- Circularity > 0.4

... phenotype peaks at ~ 6 hrs and 40 μM dose

BioTek

Comparison to pS Green Fluorogenic Probe

... good correlation of phenotypes

BioTek

Conclusions

- Cytation 5 three separate optical paths
 - Digital widefield fluorescence microscopy (1.25x, 2.5x, 4x, 10x, 20x, 40x, 60x):
 rich phenotypic data
 - Excitation and Emission monochromators with quadruple gratings: wavelength selection flexibility
 - Excitation and emission spectral filters separated by dichroic mirror: high sensitivity detection
- Enables target-based and phenotypic assays
- HTRF, fluorescence intensity, luminescence, digital microscopy demonstrated in two case studies
 - Other detection modes available: absorbance, FRET, TRF, FP, filtered luminescence

BioTek

Some of our many users...

Dr. Tara Haas, York University, School of Kinesiology & Health Science Dr. Hassan Zaidi, Ontario Institute for Cancer Research, Cancer Genomics Group Dr. Kirk McManus, University of Manitoba, Manitoba Institute of Cell Biology Dr. Donald Weaver, Toronto Western Research Institute, Toronto Western Hospital Dr. Éric Déziel, Centre INRS – Institut Armand Frappier Dr. Getulio Nogueira, University of Toronto, Department of Dentistry Dr. Balakrishnan Prithiviraj, Dalhousie University, Department of Environmental Sciences Dr. Marnie Taylor, Health Canada, Banting Research Centre Dr. Raymond Thomas, Memorial University of Newfoundland, Department of Biochemistry Dr. Patrick Gunning, University of Toronto, Department of Chemical & Physical Sciences Dr. Maxim Berezovski, University of Ottawa, Department of Chemistry Dr. Alex Wong, Carleton University, Department of Biology Dr. Cory Harris, University of Ottawa, Department of Biology Dr. Luc Berthiaume, University of Alberta, Department of Cell Biology Dr. Ryan Pelis, Dalhousie University, Department of Pharmacology Dr. Craig Moore, Memorial University of Newfoundland, Department of Neuroscience Dr. Jean Legault, Université du Québec à Chicoutimi, Department of Basic Sciences Dr. Géraldine Delbès, INRS-Institut Armand-Frappier, Department of Reproductive Biology Dr. Jan-Eric Ahlfors, New World Laboratories Dr. Jean-Yves Masson, Université Laval, Oncology Dr. Turlough M. Finan, McMaster University, Department of Biology

Dr. Alessandro Datti, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, HTS Core Facility

Lunenfeld-Tanenbaum Research Institute

MOUNT SINAI HOSPITAL

Cytation 5 Do What You Never Thought Possible!

Questions?

