BD FACSCanto II

中文操作手册 Diva6

http://www.bdbiosciences.com/tw

新加坡商必帝股份有限公司台灣分公司 電話: 02-27225660 維修專線:0800-737842

BD FACSCanto II 中文操作手册

BD FACSCanto II 中文操作手册

目錄

第一章、BD FACSCanto II 系統組成部份01
第二章、BD FACSCanto II 系統啟動與關機13
第三章、儀器設置 Surface Markers
第四章、儀器設置 DNA Analysis 32
第五章、用 FACSDiva 分析數據 42
附錄一、常用螢光染劑52
附錄二、Optical Configurations

第一章、BD FACSCanto II 系統組成部分

BD FACSCanto II 流式細胞儀

光學系統設計特點:

- 488nm, 20mw 固態雷射器和 633nm, 17mw 氦氖雷射器;
- 採用專利技術的光路設計,擴展了可檢測的螢光信號(6~8色螢光參數,2個散射光);
- 高靈敏度,更適合檢測弱表達或含量極低的指標;

液流系統設計特點:

- 採用獨立的液流車,提供儀器運行所需的所有液體環境,節省了時間;
- 搭配自動化軟體介面,使得液流的控制高度自動化,易於操作;
- 全新設計的樣本進樣系統使得樣本滯留量小於 0.1%,更適合微量樣本的檢測;

數位化電子系統:

- 消除了電子死時間,無需進行時間延遲校準,因此系統可以處理更快的樣本流動速度(120 uL/min)及採樣速度(10,000 events/sec);
- 簡化了螢光補償的設定,實現了自動補償和採樣後補償的可能。

1.1 BD FACSCanto II 系統由三個主要組成:

- 細胞分析儀主體
- 系統液流車
- BD FACStation 電腦工作站

FACSCanto II 細胞儀主體外觀:

1.2 Fluidics 液流系統

液流系統包含Sample injection tube樣品上樣針(SIT)、aspirator arm吸取器手臂、flow cell 流動室、緩衝加壓的蓄水池、及一系列提供液體、輸入廢液的管線。你將安裝樣品管在SIT 上。液流小車裡的一個幫浦會加壓內部的蓄水池,提供鞘流到流動室中。在這同時,樣本經由SIT被推入流動室中。

上樣區剖面圖:

下表簡短地說明上圖中這些組件:

組件名稱	功能說明
flow cell	流動室,鞘液流與樣品流交會處。
tubing	一系列提供液體、輸入廢液的管線
SIT	樣品上樣針,引導樣品進入流動室。
aspirator arm	吸取器手臂,可移或廢液吸除器。
aspirator arm bar	一個金屬桿,可用於將吸取器手臂推離 SIT。
tube guide	協助引導樣品管正確推入 SIT (Loader 操作時使用)
tube eject cylinder	用以卸下樣品管 (Loader 操作時使用)
tube sensor	協助偵測 SIT 上樣品管的位置
bal seal access	卸下置換 Bal seal 入口

當用戶安裝試管到 SIT 時,液流系統車內有個幫浦會對內置緩衝容器中充氣。內置緩衝容器保存鞘液直至鞘液被幫浦輸入流動檢測室,它可以通過維持液體水位和消除幫浦的震動來去除壓力波動。這樣,該液流系統內的壓力不會隨鞘液容器內液體水平的波動而波動。同時間,樣品試管也被充氣加壓,而樣品便會順著 SIT 被送進流動室。

圖、內置緩衝容器

當你從 SIT 卸除樣品試管時,細胞儀會以鞘流液潤洗 SIT 管內、外部區域。 順流而下的鞘流液最後會滴到吸除手臂上,被吸到廢液筒裡。在使用 BD FACSDiva 軟體時,試管間會自動進行 SIT 潤洗,除非你在 Acquisition Dashboard 的 SIT Flush Checkbox 中取消此項自動功能。

每日關機時,或者待機沒上樣品試管期間,不需要留一管蒸餾水在 SIT (與在 FACSCalibur 操作時不同)。一般樣品試管裡的液體不要超過3mL,否則可能引起試管傳感 器變得潮濕而無法正確偵測試管。

1.2.1 流動室 Flow Cell 剖面圖:

一旦樣品進入流動室,細胞或粒子將形成一路縱隊向雷射光束移動。 來自這些粒子的 散射光和發出的各色螢光將提供關於它們的尺寸、形狀、顆粒性、和生化生理特性的訊息。 在流動檢測室中,透鏡將雷射光束聚焦在樣品流軸心位置。雷射光束聚焦在樣品流上產生最 佳的光信號。由於光學通路和樣品流軸心的位置固定,所以此種最佳化狀態一直保持穩定。

1.3 Optics 光學系統

BD FACSCanto II 分析儀的光學系統是由激發光學系統和收集光學系統所組成。激發光學系統為流動的細胞帶來光能;收集光學系統則收集從細胞或粒子發出的螢光信號或者散射光。

1.3.1 Excitation Optics 激發光學系統

光信號激發系統由雷射器、光導纖維、形成光束的稜鏡和一個高透光性聚焦透鏡組成。光導 纖維系統將雷射光束精確、穩定地匯聚在光束形成稜鏡上,再通過稜鏡,將雷射光束投射至聚焦 透鏡上,見圖1-3所示。

FACSCanto II 雷射:

BD FACSCanto II 儀器使用低功率、氣冷式固態雷射器,這樣一來,該儀器就不需要特殊電源和冷卻設備了。儀器的標準規格配備有兩支雷射。

雷射	波長	最小功率	常用螢光染料
	(nm)	(mW)	
Coherent ^R Sapphire [™]	488(藍色	L) 20	FITC, PE, PE-Texas Red,
固態			PerCP, PerCP-Cy5.5,
			PE-Cy7,PI
JDS Uniphase [™] HeNe	633 (紅色	L) 17	APC,APC-Cy7
氣冷式			

雷射光路剖面圖 (圖示 4-2-2 規格):

1.3.2 Collection Optics 收集光學系統

聚焦透鏡系統則引導雷射光進入流動室核心的樣品動線上(圖 1-3)。以 4-2 規格設計 FACSCanto II為例,收集光學包括兩個檢測器陣列,由如圖1-4中所示的一個八角形和一個三角 形排列的光電管組成。

八角形檢測器陣列包含五個光電管,它負責檢測來自藍光雷射的信號。其中有一個光電管, 它負責檢測 90 度側方散射光信號。三角形檢測器陣列包含兩個光電管,它負責檢測來自紅光雷 射的信號。

光學訊號接收器圖示(圖示 4-2 規格):

信號收集系統被設計成八角形和三角形的排列,這種設計可有效地從每一個雷射器中檢測光 信號。具體如下:通過一組長通二分鏡 Longpass DM,先將螢光信號中波長最長的傳輸到第一 個光電管(PMT)上,反射回來的較短波長的光信號則向下一個 PMT 方向發射。每一個 PMT 之前的帶通濾光片 bandpass 允許對所需收集的光譜波長做精細調節。如圖示,Blue A(750~810 nm)、Blue B(670~730nm)、Blue D(564~606nm)、Blue E(515~545nm)、Blue F(488nm)。 由於反射比透射的效率更高,所以這種設計提高了該儀器在多色分析時的檢測性能。

除光電管檢測器之外,與雷射平行方向有放置一高敏度光電二極體photodiode,用以收集強大的前方散射光信號。這個二極體前方有個遮光棒,可以防止正向直射的雷射光進入,只接收 繞射光 (見圖 1-2)。

	РМТ	LP Filter	BP or LP Filters	Fluorochromes
	Position	(nm)	(nm)	
488 Laser	Blue A:	735	780/60	PE-Cy7
	Blue B:	655	670LP	PerCP,
				PerCP-Cy5.5
	Blue C:	610	Blank filter	N.A
	Blue D:	556	585/42	PE
	Blue E:	502	530/30	FITC
	Blue F:	Blank filter	488/10	SSC
633 Laser	Red A:	735	780/60	APC-Cy7
	Red B:	685	Blank filter	N.A
	Red C:	Blank filter	660/20	APC

雷射光源及對應接收器螢光波長表 (圖示 4-2 規格):

1.4 Electronics 電子系統

電子系統負責把光子信號轉化成電子信號,並將之數位化為後續電腦分析作準備。在二極體和 PMT光電管所產生的信號,會與他們偵測到光子的數量成正比。細胞儀的電子系統會接著將這些 連續電壓的類比信號放大,然後轉換成分離的數字化數值。在信號放大和數字化轉換後,從染色 細胞粒子的特色螢光信號就會落到特定的通道,因而允許分群分析。

BD FACSCanto II 個電子系統部件由電源控制、連接器和板槽中的處理板、液流系統控制單元、 和收取指示燈等元件所組成。本章節僅描述可供使用者調節的電源面板和收取指示燈;想獲取 有關電子系統的更多資訊,可以參考《BD FACSCanto II Flow Cytometer Reference Manual》 中的 Signal detection 信號檢測章節。

1.4.1 電源面板 Power Panel:

Figure 1-5 Flow cytometer power panel

系統只需由一條電纜供電給儀器、雷射器、和液流系統車,該電線插頭直接插入了一個標準 的室內電源插座;不需要其他特殊的設備。按下電源主開關,則啟動了該儀器和液流系統車。我 們建議串聯使用一個連續供電系統,在電力不繼時維持儀器電能。

下表說明上圖中的一些組件:

Port or Button	功能說明
System Power	提供電源給 FACSCanto II 主機與液流小車。
Power Out	FACSCanto II 主機到液流小車供給電源插座。
Communication cable	數據傳輸線接頭。
System AC power plug	系統電源接頭。
System circuit breaker	系統電路保險。如果實驗室裏出現電力超高時,則需要
	對該電閘進行重定。

1.4.2 Acquisition Indicator Lights 收取指示燈

收取指示燈在細胞儀的正前方的檢修蓋板上。每個光信號對應一個燈,只要該信號在對應檢 測器達到預設閾值時,燈便會閃爍一次。收取指示燈只有在系統正在收取數據時才會運行,同時 也只有被指定收取的光參數才會閃爍。

1.5 液流系統車

獨立的液流系統車提供濾過後乾淨鞘液和清洗液,並能從儀器中收集廢液(下圖)。這種一 體化獨立的液流系統車提供所需的空氣壓力,完全不需要其他外加供氣供水設備。氣壓泵提 供了穩定氣壓,可以滿足高速細胞分析的需要。下圖中從液流系統車後側,可清楚看到門旋 鈕。

1.5.1 容器和連接器

液流系統車上裝有 一個 20 升的 FACSFlow 鞘液桶,一個 10 升廢液 桶,一個 5 升 FACS Shutdown 溶液,以及一 個 5 升 FACSClean 清潔 液桶(下圖)。每個溶液有 它自己專屬接頭和水位傳 感器,請勿交換使用。每 個溶液水位的警報,不足 或 過 多 , 會 在 BD FACSCanto 臨床軟體和 BD FACSDiva 軟體中提

示用戶,用戶可依指示補充。液流系統車下方可清楚看到每個溶液有它自己專屬的過濾器。

一般液流系統車被放置在流式細胞儀的左側或下方。液流系統車通過一根電線、一根液流軟管、和一根氣體通路線直接連接到流式細胞儀上。液流系統車的電力由流式細胞儀提供;當流式細胞儀主開關打開時,液流系統車上的液體幫浦即被啟動。一般來說,使用 FACSCanto II 不需使液流系統車與外界氣體源連接,可將輔助氣體供應開關置於 Off 狀態。

另外請將液流系統車的電路保險 Circuit Breaker 置於 On 狀態。

Powering Off

液流系統車的電力由流式細胞儀提供;想關閉液流系統車上的液體幫浦,關閉流式細胞儀的 系統電源即可。在液流系統車關閉時,你通常會聽到洩氣聲,並且有少量凝結水將流出。

Condensation Trap 凝結水接收埠

液流系統車凝結水接收埠位於液流車電源面板下面。 每日關機時,請清除接收埠內水份。

- ▲ 注意:液流系統車的電力由流式細胞儀提供並控制。維修工程師會按照原廠說明書要求,對液流系統車進行電壓設定。為正確操作液流系統車,您只能將液流系統車電線接入儀器上的電源插座。
- ▲ 注意:不要將電線直接接入牆內介面。不要更改液流系統車保險支架上的輸入電跳線。
- ▲ 注意:當液流系統車運轉時,流量測量錶壓力波動於 60~70psi 之間(如下圖)。若讀 出來的壓力小於 50psi 提示該液流系統車未能正常工作。如果發生此類問題,您可以 與 BD 儀器維修部聯繫尋求幫助(0800-737-842)。

1.5.3 液流系統示意圖

1.6 BD FACSCanto II 工作站

資料的獲取與分析,以及 BD FACSCanto II 儀器的絕大部分功能,均是在 FACSCanto II 工作站上,由 BD FACSCanto II Clinical or FACSDiva 軟體控制操作。

該工作站包括以下部分:

- BD 原廠規格配置的 PC 電腦(含滑鼠、鍵盤)
 - 用於獲取資料的工作站必須配置有一個 Pentium^R IV 或是更高級的處 理器,有一個至少 1GB 的 RAM,一個 40GB 的可用的硬碟空間,以及 Windows XP Professional (US-English)作業系統。
- 17 吋螢幕
- 彩色印表機
- BD FACSCanto II Clinical Software version 2.1 or above
 - Instrument QC, Lymphocyte subset TBNK, HLA-B27, Stem Cell Enumeration
- BD FACSDiva 軟體 version 5.0 or above
 - 資料的獲取與分析
 - 液流系統的自動啟動,關閉和清洗模式
- BD FACSDiva Data Manager
 - 資料的備份與儲存

第二章、BD FACSCanto II 系統啓動與關機

- 7. 執行液流啟動:
 - → 點擊 Cytometer > Fluidics Startup
 - → 於確認視窗中點選 OK

液流啟動程式會將細胞儀中存留的Shutdown solution置換成Sheath buffer (System Prime -- Bubble filter purge –Degas flow cell) ,約需5~10分鐘。

8. 當液流啟動程式完成後,請點選OK。

△ 注意: For Diva 6.0 以上版本,可於工作區右下方之狀態列確認液流系統已確實啟動

Ready	3 02:44:21	🖯 Connected 🤇	🔿 Fluidics Startup done	>

9. 檢視雷射是否暖機完成。 雷射暖機時,在Instrument 視窗下方會顯示- Remaining warmup time: 7:27。暖機完成後,視窗下方會再次顯示The system is ready。

10. 您現在可以開始規劃實驗檔、或設置儀器了。
見本手冊第三章。

2.2 儀器視窗內重要控制 (Controls in Instrument Frame)

液體水準指示器 Fluid Level Indicators

BD FACSDiva 軟體提供液體水準指示器儀器視窗內。FACSFlow 和廢液指示器有階段 式指示(17%、34%、51%、68%...),而 shutdown 和 cleaning 溶液指示器只在液面低於 20%才會提供警示。當某一液體不足時,該液體水準指示器會轉變成紅色,如下圖。

17

- 綠色的高低指示 FACSFlow 和廢液的體積 ·
- 黑色的面積指示 FACSFlow 消耗比例、或廢液槽尚存的空間。
- 紅色指示那一個槽需要服務;因為它是滿的(廢液槽)或空的(其他槽).

在上機分析樣品時,當 FACSFlow 溶液過低(<17%),或者廢物槽幾乎充滿(>83%)時,螢幕上會出現如下訊息:

🙆 Warr	ning	
2	Waste is full, ple ase empty.	
		Close

請在此時依指示充填或倒除溶液。假如這 FACSFlow 槽完全變空(0%)的,或者這廢物槽充滿溢流(>99%),整個儀器系統會自動暫時關閉。你仍將需要依指示充填或倒除溶液,方可繼續。

雷射活頁 Laser Tab

雷射活頁同時包含 Window Extension 與 FSC Area Scaling 的調整裝置。一般的生醫 研究或常規臨床應用,接受預設條件即可。

*	Cytometer - F	ACSC	antoll (1)			X
	Status Threshold	Laser	Param Compensat	eters ion	Ratio	
	Status		Measured	Refere	nce	
	Blue Laser Curren	t	1.57		1.63	
	Blue Laser Power		20.02		20.63	
	Red Laser Power		27.19		28.41	
	Violet Laser Powe	r	27.19		28.41	
	FSC Area Scaling	: (0.95 J	Aug. 6		
	Name		Delay	Area 5	caling	
	Blue		0.00		1.42	
	Violat		30.10		1.11	
	VIDICC.		41.12	BD Defa	aults	
Т	he system is ready					

狀態活頁 Status Tab

如有需要,可觀察狀態活頁,會有儀器狀態的訊息資料顯示。

<u>2.3 獲取控制鍵(Acquisition Dashboard)</u>

獲取操縱組件包含操縱主機,進行獲取和記錄數據資料。可按工作空間上工具鈕中, 來顯示該組件。只有當電腦工作站有連接到細胞計數儀時,獲取操縱組件才能被顯示。 獲取操縱組件功能如下:

🔢 Acquisition Dashbo	pard		×
Current Activity			J
Active Tube/Well	Threshold Rate	Stopping Gate Events	Elapsed Time
unlabeled	0 evt/s	0 evt	00:00:00
Basic Controls			
→ Next Tube	Acquire Data	cord Data	rt
Acquisition Setup			
Stopping Gate: 📕 si	inglets 🛛 💌 Events To Record:	10000 evt 💉 Stopping) Time (s 0 😫 🛉
Storage Gate: 📃 si	inglets 🛛 👻 Events To Display:	1000 evt 💉	
Acquisition Status			
Processed Events:		Electronic Abort Rate:	
Threshold Count:		Electronic Abort Count:	

- Next Tube:分析下一管檢品。
- Acquire Data: 獲取,開始在螢幕上顯示測量到的細胞資料。但並不記錄。
- Record Data:記錄,開始依指令記錄資料成 list mode data。
- Restart:在 Acquire 或 Record 模式時,要求中止重測。
- SIT Flush: 啟動 SIT 的清洗,以降低前後樣品間交叉污染。

Flow Rate :

獲取操縱組件中可選三種流速控制鍵。控制樣品流速: Low: 樣品流速:10 μl /min Medium:樣品流速:60 μl /min High: 樣品流速:120 μl /min

2.4 上機前檢查程序

- 1. 是否已執行 Fluidics Startup ?
- 2. 液流小車系統氣壓讀數是否正常 55~65 Psi ?

₫**₫**

- 3. 檢品濃度調至 1X10⁶ cells/ml?一般只需 0.5 ml。
- 4. 是否已將檢品放至 FALCON 352052 試管中?試管是否有裂痕?
- 5. 是否已小心地去除檢品中之細胞團塊?
- 6. 看液面指示。是否有足量專用鞘液? 是否已將廢液倒掉?
- 7. 是否已將三個液體過濾器中之氣泡排空?
- 8. 請填寫使用登記表。

2.5 儀器關機程式

使用完細胞儀後,請執行 Fluidics Shutdown 程式;這個動作會將管路中的汙濁液流置換成 BD FACS Shutdown solution(或蒸餾水),用以防腐並避免管路中鹽類結晶的形成。

- 1. 取 3 ml FACSClean (10%Bleach)上樣品。
- 2. 在 Basic controls 上,按 Acquire Data。

🗰 Acquisition Dashboard			×
Current Activity Active Tube/Well Threst unlabeled 0 evi	hold Rate S t/s (Stopping Gate Events 0 evt	Elapsed Time 00:00:00
Basic Controls	re Data 📕 Reco	ord Data	

- **3.** 讓儀器在 High Flow Rate 模式下, Acquire 5 分鐘。5 分鐘後, 再按一次 Acquire 以中止收取。
- 4. 取下 FACSClean 管。 換上 3 ml dH2O 上樣品,
- 在 Acquisition dashboards 上,按 Acquire。讓儀器在 High Flow Rate 模式下,Acquire
 5 分鐘。
- 6. 5 分鐘後,再按一次 Acquire 以中止收取,取下樣品管。

▲ 注意:為避免液體溢流,在進行 Fluidics Shutdown 時,請務必取下樣品管。

7. 執行液流關閉:

- → 點擊 Cytometer > Fluidics Shutdown
- → 於確認視窗中點選 OK
- → 完成後,點選 OK 以結束液流關閉步驟

Fluidics Shutdown 完成後,

腦。

▲ 注意:每日關機後,不需要放 1 ml 蒸餾水的樣本管在 SIT。

▲ 注意:請確實等

再關閉細胞儀或電

- 8. 以乾淨之無塵拭鏡紙沾取 dH2O 擦拭樣品上樣針並擦乾。
- ▲ 注意:勿過度用力彎曲上樣針。此步驟可避免鹽類結晶累積在上樣針上,造成管路阻塞。
- 9. 關閉細胞儀,關閉電腦。如有必要,請加入 1/10 體積漂白水,再倒掉廢液,避免生物 性危險。
- 10. 清除 Condensation Trap 凝結水接收埠內之水份。

2.6 FACSCanto II 流體系統的維護

Clean Flow Cell.. 清洗流動室

當細胞儀的光敏感度下降時,可執行 Cytometer/Clean Modes/Clean Flow Cell..功能,並 上樣 3 mL FACSClean 清潔液,可指揮清洗液運行流動室與上樣埠。在此程式完成後, FACSClean 清潔液依然留在流動室與上樣埠內,直到你執行 fluidics startup 或 fluidics shutdown 功能。

De-Gas Flow Cell or Bubble Filter Purge 清除氣泡濾器裡的氣泡

氣泡濾器位於鞘液筒與緩衝蓄水池和流動室之間,它的功能在清除所有流經的氣泡。但如不小心發生鞘液用罄,氣體灌入氣泡濾器時,就可能需要移除氣泡濾器裡的大量氣體。上機時,發現 CV 值比平日高許多時,可能合理懷疑此一可能性。
 可執行 Cytometer > Cleaning Modes > De-gas Flow Cell...功能。
 可執行 Cytometer > Cleaning Modes > Bubble Filter Purge...功能。

Priming 灌洗液流管

用戶使用此一功能可在換新任何儲液筒後,或為維修理由必須暫時切換儲液管路時,確保液 流管路中沒有氣泡。

可執行 Cytometer > Cleaning Modes > Prime After Tank Refill..功能。並在隨後出現的對話 框,選擇適當儲液筒,按 OK。

液流系統的淨化 (Long Clean)

使用 Long Clean 功能可清潔儀器內部的鞘流路徑,先以液流車上的 FACSClean,之後再用液流車上的蒸餾水,或原廠指定的 FACS shutdown 溶液,整個程式約需 75 分完成。

實際操作時,先確定液流車上有足量的 FACSClean (>275 mL)、與蒸餾水 (>1,100 mL), 並倒空廢液筒;然後執行 Cytometer > Cleaning Modes > Long Clean..功能。大約 70 分鐘 等待完成這清洗循環.

2.7 FACSCanto II 用耗材清單

品項	供應商	目錄號
儀器品管用		
BD FACS 7-color setup	騰達行	Cat. No. 335775
beads		
Rainbow fluorescent	騰達行	Cat. No. 556288
particles		
Nile Red fluorescent particle	騰達行	Cat. No. 347240
消耗性溶液		
BD FACSFlow sheath fluid	騰達行	Cat. No. 342003
BD FACS cleaning solution	騰達行	Cat. No. 340345
BD FACS shutdown solution*	騰達行	Cat. No. 334224
House hold bleach for waste		
專用試管 :5mL polystyrene	test tubes (Falcon™)	
uncapped, 125 per bag		Cat. No. 352052
capped, 125 per bag		Cat. No. 352054
capped, 25 per bag		Cat. No. 352058
with cell-strainer cap		Cat. No. 352235

*BD FACS shutdown solution 可用以避免管路中塩類結晶形成與累積。

第三章、儀器設置 Surface Markers

在本章中,您將學習如何進行簡易雙色分析之儀器設置最優化。在您記錄一個樣品的資料之前,必須先根據所使用的樣品類型和螢光染料的不同,對光電倍增管電壓值,補償值和 閾值設置進行最優化設置。經過最優化設置後,不同螢光參數下的目標細胞都能分佈在圖形 刻度上。

對流式細胞儀的最優化設置包括幾個步驟;

- 登錄進入BD FACSDivia軟體
- 新建一實驗 Experiment
- 螢光參數選擇
- 設計Global Sheet獲取範本
- 最優化流式細胞儀的設置
- 記錄實驗數據

本節將以從事Surface Markers雙色分析為例, 敍述如何利用"Cytometer Setting (儀器 設置)"功能,對該儀器進行雙色分析設置最優化。對您而言,您在操作這些步驟時,請盡 可能按照順序進行。

3.1 登錄進入 BD FACSDivia 軟體

- 1 啟動儀器,按第二章「開機程式」的描述進行操作。
- 2 登錄進入 BD FACSDivia 軟體。
- 3 在軟體中工作時,視窗可能會隱藏。可到 View 下拉功能欄看是否所有必需工具皆已開啟。如仍未見特定視窗,可用 View>>Reset positions 回復軟體預設視窗位置。或雙擊相應視窗標誌,將該視窗移到前臺。

3.2 新建一實驗

4 在 Browser (瀏覽器)中,你的實驗可以依以下單元組織而成,檔夾>>實驗次檔夾>>樣品次檔夾>>試管次檔夾 (Folder>>Experiment>>Specimen>>Tube。參考下圖。

5 要產生一個 Folder,先以滑鼠點選你的資料槽,然後點擊 Folder 標誌。

		₽ :€	1 🖬 🔨	ĉ,
-		0.34		9

6 要產生一個 Experiment,先以滑鼠點選你新增的 Folder,然後點擊 Experiment 標誌。或從螢幕上方選擇 "Experiment>>New Experiment"來新增實驗。並在隨後出現的「Experiment templates」方框中,選用「Blank Experiment with Sample Tube」。

Expe	riment	Populations	Worł	
	New	Folder		
	💕 New	Experiment		
3	New.	Specimen	13	
1	New	Tube		
Experiment Templates				
General QC				
Name		Date	T	Name: Blank Experiment with S
Blank Experiment				
2Colors_demo1		11/26/06 6:17 8	PM	
6 color cocktails		11/26/06 6:12 8	PM	
Accudrop Drop Delay		8/13/04 2:38 Pt	N	
Blank Experiment with Sample Tube		12/19/05 4:50	PM	
Doublet Discrimination Gating		12/9/04 4:40 Pt	VI	
QC Experiment		10/24/04 11:29	AM	
Name: ank Experiment with Sample T	ube			Copies: 1

7 更名功能。對 FACSDiva 軟體預設的檔夾名稱,皆可重新命名。在瀏覽器中選擇" Blank Experiment with..." 實驗 檔夾,應用滑鼠右鍵 Pop-up Menu 更名功能,然後輸入"2-color exp"字元,按 Enter 來命名此新建的實驗檔夾。

8 "Blank Experiment with Sample Tube" 檔夾己含有一 Specimen_001,如果你的實驗檔夾中沒有 Specimen,點
 擊 Specimen 標誌新增之。

每個 Specimen 應至少有一試管 Tube_001,可點擊 Specimen_001 前+號展開,使可見,如下圖。每個空白 Tube 左方有一相對應「指示箭頭」,等一下分析樣品時,必須用滑鼠點擊,使其呈綠色,才能進行儀器參數設置。

3.3 螢光參數選擇

9 在瀏覽器中以滑鼠選擇此"2-color exp"檔夾下的"Cytometer Settings" (儀器設置)。單擊"Inspector"視窗裏的"Parameters"頁面。用戶可在 Parameters 頁面上,去除多餘的參數,我們在此練習去除 PerCP-Cy5-5, PE-Cy7, APC, APC-Cy7 等四個螢光參數,留下 FITC 和 PE 螢光參數。

Parameters 頁面如右。單擊視窗裏的"Add or Delete"鍵來增加或刪除參數。如經儀器管理員事先設定,可點擊 參數方格中右側箭頭更改參數名稱,如 FITC 可改成 EGFP 或 Alexa 488。PerCP-Cy5-5 可改成 PerCP 或 PI。

🔎 Ins	pector - Cytometer	Settings	
Cyto	meter Settings		
Par	ameters Threshold R	atio Comp	ensation
	Parameter	Voltage	
	FSC	250	
	SSC	311	
	FITC	622	
	PE	463	
	PerCP	562	
	APC	497	
	Add		Delete Print

3.4 設計 Global Sheet 獲取範本

10 在空白"Global Sheet1"上,先選擇上方" Dot Plot"工具選項,並在獲取範本點繪製兩個散點圖。(1) FSC-A vs SSC-A (2) FITC-A vs PE-A。左鍵單擊圖形坐標軸,可以修改圖形上的坐標參數。

3.5 最優化儀器設置 (Optimize Settings)

本節中,將通過以下五個步驟,學習儀器的最優化設置。

- 調節 FSC 和 SSC 設置
- 調節閾值設置
- 為目標細胞群體設門
- 為特定的螢光染料參數調節光電倍增管電壓值
- 手動進行補償

以從事 Surface Markers 雙色分析為例,將使用以下螢光染料對照樣品管:(1)空白對照,(2) CD3 FITC 單色對照,(3) CD4 PE 單色對照。

調節 FSC 和 SSC 設置

- 11 您可以在運行"空白對照管"時,調整在"Cytometer"視窗的各個頁面上相關設置。先確認瀏覽器中,綠色的獲 取指示(■)位於"Tube_001"。
- 12 將空白對照管裝入載樣埠。單擊"Basic Controls"視窗裏的"Acquire"鍵。此指令會使軟體即時呈現儀器所測得的細胞資料,但不作記錄(Record)。

調節 FSC 和 SSC 電壓值 Voltage,使能夠適當地顯示全血中三個主要細胞群(如圖,要點在使有意義的族群能獨 立成群)。單擊 "Cytometer" 視窗中的" Parameters" 頁面。調節 FSC 和 SSC 電壓值,通常先調節 FSC,再調 節 SSC。完成後,再按一次 Acquire 鍵可中止獲取。

粍 Cytomet	er - FACS	Canto (V	0041) 🚺
Laser Status	Con Parar	ndensation meters	Т	Ratio hreshold
Param	eter	Voltage	. .	
 FSC 		407		
 SSC 		432		
 FITC 		530	$\mathbf{\nabla}$	
• PE		473	$\mathbf{\nabla}$	
 PerCP-C 	ly5-5	637	$\mathbf{\nabla}$	
 PE-Cy7 		778	$\mathbf{\nabla}$	
 APC 		613	$\mathbf{\nabla}$	
 APC-Cy 	7	641	$\mathbf{\nabla}$	
				×

調節闌值

13 單擊 "Basic Controls "視窗裡的 Acquire 鍵。需要時,單擊 "Instrument" 視窗中的" Threshold"頁面。在此設 定閾值參數,並調節 FSC 閾值。閾值的設置是為了排除非目標信號的干擾。

為目標細胞群體設門

14 在 Global Sheet1 工作圖上,選擇多角形圈選工具,並在 FSC-A vs SSC-A 圖上繪圈出「淋巴球」位置,形成「P1 門」。「P1 門」選定後,門內細胞會自動呈色。您可以移動它,或是拖曳"門"上的任何一控制點,來改變"門"的大小和形狀。練習看看。

15 按住 "Shift" 鍵,用滑鼠連續點選所有螢光參數散點圖。用滑鼠右鍵單擊選中其中一個圖形,選擇" Show Population "命令;接著選擇 "P1",如圖。這樣一來,所有選中的圖形上就只顯示 P1 淋巴細胞群體。

	Spe "e-	Show Population Hierarchy Create Statistics View	r III Ctrl+G Ctrl+R
~	All Events	Show Populations	•
	P1	Scale to Population	•
		Show Gate	•

調節螢光光電倍增管設置

您可以在運行「空白對照管」時,調整在"Cytometer"視窗的光電倍增管電壓值 Voltage,以檢查自發螢光。

16 將空白對照管裝入載樣埠。先確認瀏覽器中,綠色的獲取指示(■)位於 "Tube_001" 單擊" Basic Controls" 視窗裏的"Acquire"鍵。此指令會使軟體即時呈現儀器所測得的細胞資料,但不作記錄(Record)。

需要時,單擊 "Cytometer" 視窗中的"Parameter" 頁面。調整各個光電倍增管的電壓值,使得陰性細胞的每種 螢光參數信號均顯示在左下角區域內(如圖)。完成後,再次單擊 "Acquisition dashboards" 視窗裡的 "Acquire" 鍵來中止獲取。

空白對照樣本管 FITC-A vs PE-A 圖形 如有必要,可在圖形上加設四象限(quadrants)、及相關統計表,以便調整時觀察。

手動進行光學補償

17 將 FITC 對照管裝入載樣埠。先確認瀏覽器中,綠色的獲取指示(▶)位於 "Tube_001",單擊" Basic Controls" 視窗裏的" Acquire"鍵。調整 PE-%FITC 數值,使 unstained(Q3)與 FITC alone(Q4) 的 PE-A Mean 值相當,如 下圖。

🖶 Cytometer				
Chabur	_	0		
30805		P	ramecers	<u> </u>
Threshold	Laser	Compe	nsation	Ratio
💌 En	able Comp	ensation	Clear	
Fluorochro	me - %	Fluoro	Spectral (D
+ PE	FITC			0.00 🔼
· PerCP-Cy5-	5 FITC			0.00

18 將 PE 對照管裝入載樣埠。先確認瀏覽器中,綠色的獲取指示(■)位於 "Tube_001",單擊" Basic Controls" 視窗裏的" Acquire"鍵。調整 FITC-%PE 數值,使 unstained(Q3)與 PE alone(Q1)的 FITC-A Mean 值相當,如 下圖。

19 您已完成簡易雙色分析的儀器設置。可列印"Experiment "檔夾下的儀器設置。右鍵單擊實驗文件夾中" Cytometer Settings"圖示,並在 Inpector 視窗中,選擇"Print"列印設置,可貼到實驗筆記本中。

₽	Inspector -	Cytometer	Settings	. 🔀
ſ	ytometer Set	tings		
	Parameters	Threshold Ra	atio Comp	pensation
	Parame	ter	Voltage	
	 FSC 		250	
	 SSC 		311	
	• FITC		622	
	🔹 PE		463	
	 PerCP 		562	
	 APC 		497	
				<u>~</u>
	Ac	bi		Delete
				Print

自動進行光學補償

- 20 您也可以選擇利用 FACSDiva 軟體進行自動光學補償。點擊 Experiment > Compensation Setup > Create Compensation Controls。
- 21 確認 "Include separate unstained control tube/well" 前方之勾選框有被選取,並將不需要之參數刪除後點選 OK 建立 Compensation Controls。

	Create Compensation Controls	
	 Tubes 	OPlate
1	Include separate unstained control tube/well	
	Fluorophore	Label
	FITC	Generic
	PE	Generic
	PerCP	Generic
	APC	Generic
	Add Delete Labels	OK Cancel

22 點擊 unstained control 管前方之箭頭使其呈現綠色 ▶ 並將 unstained control 管放置於 sample 上樣處, 點擊 。 ▲ Acquire Data

23 觀察 Normal Workshhet 中細胞群的位置與背景螢光值,適當調整閾值與各參數電壓設定。

24 將 P1 移動至細胞群位置並適當改變形狀。按滑鼠右鍵點選 Apply to all Compensation Controls。

25 點擊 ■ Record Data 記錄資料。

26 取下 unstained control 管,點擊 → Next Tube 並依序記錄每一管 compensation controls 的 data。

27 確認 single stained control 管 P2 的位置無誤。如必要,適當移動 P2 位置圈選陽性細胞族群。

28 點擊 Experiment > Compensation Setup > Calculate Compensation。

Single Stained Setup
Compensation calculation has completed successfully
Name: 4-color ZT
Link & Save Apply Only Cancel

29 點選 Apply Only 套用 Compensation 設定。

3.6 記錄實驗數據

準備工作

30 命名樣品與試管名。預設輸出檔名為 Specimen_001_Tube_001。可依此原則為您的樣品系統化命名。

	🖵 🗍 Tu	🔎 Inspecto
以宿鼠點選 Specimen_001,业在 Inspector	s log Shared view	Specimen K
Sample_0831,按 Enter。		Name:
		Collected:

	nen_oon		
لا سال Tu Shared View &	🖉 Inspector		- 古框山龄人站夕,加
	Specimen Ke	ywords	刀框中躺八制石,如
	Name:	Sample_001	
	Collected:		
	Global Sheet:		

31 同理,以滑鼠點選 Tube_001,並在 Inspector 方框中輸入新 Name 名,如 CD3_CD4_001,按 Enter。注意: Diva 軟體不可採用小數點當檔名。

🔑 Ins	pector			
Tube	Labels	Acq.	Keywords	
Nam	e:	CD3	_CD4_001	
Glob	al Sheet:			-
Tota	I # of Eve	nts:		

32 標記 Labels。在"Lable (標記)"頁面上,為各個螢光參數輸入標記字元。以滑鼠點選 FITC 參數格,在 Label 欄 位上鍵入標示文字,如 CD3。依序將所有的螢光參數標示明白。

👂 Inspector		
Tube Labels	Acq.	Keywords
PE	CD4	1
FITC	CD3	
PerCP-Cy5-5		
PE-Cy7		
APC		
APC-Cy7		

	Kaunumita I
	Keywords
Events to Record:	10000 evt 📉 💌
Stopping Gate:	10000 e <mark>M</mark>
	20000 evi
Storage Gate:	30000 evt
	50000 evt
	100000 evt
	1000000 evt
	2500000 evt

33 在"Acq (收集)"頁面上,設定「Events to record」、「Stopping gate」、「Storage gete」,可依實驗需求自行選定。

資料獲取過程中,請觀察 Global sheet1 中 FSC/SSC 圖形 P1 門圈選適當與否。如有必要,可在有興趣的圖形上加設族群區域(populations)、陰陽界限(marker)、或四象限(quadrants)、及相關統計表,以便觀察。

34 將裝有 CD3 FITC/CD4 PE 螢光染色的 Sample_001 樣品管裝入載樣埠。在瀏覽器中,確認綠色的獲取指示(■) 位於 "CD3_CD4_001"。可先單擊" Acquisition Dashboard" 視窗上的" Acquire "鍵,待細胞開始在圖形上 出現,並確認 P1 位置正確後,單擊" Acquisition Dashboard" 視窗上的" Record "鍵。

35 記錄完 10,000 個細胞後,將樣品管從載樣埠上取下。

35 自動升冪試管名。在"Acquisition dashboards" 視窗上單擊"Next Tube",新建第二個"Tube"。注意:此時 新建的"Tube"自動被命名為"CD3_CD4_002"。

在瀏覽器中,確認綠色的獲取指示(IPI)) 位於 "CD3_CD4_002"。將裝有 CD3 FITC/CD4 PE 螢光染色的樣 品管裝入載樣埠。可先單擊" Acquisition dashboards" 視窗上的" Acquire "鍵,待細胞開始在圖形上出現,並 確認 P1 位置正確後,再單擊" Record "鍵開始記錄。

36 重覆上述分析步驟,至分析完所有檢品。

第四章、儀器設置 DNA Analysis

在本章中,您將學習如何進行簡易DNA分析之儀器設置最優化。在您記錄一個樣品的 資料之前,必須先根據所使用的樣品類型和螢光染料的不同,對光電倍增管電壓值,補償值 和閾值設置進行最優化設置。經過最優化設置後,不同螢光參數下的目標細胞都能分佈在圖 形刻度上。

對流式細胞儀的最優化設置包括幾個步驟;

- 登錄進入BD FACSDivia軟體
- 新建一實驗 DNA Analysis
- 螢光參數選擇
- 設計Global Sheet獲取範本
- 最優化流式細胞儀的設置
- 記錄實驗數據
- 資料輸出, ModFit LT分析

本節將以從事 DNA 單色分析為例, 敍述如何利用"Cytometer Setting (儀器設置)"功能,對該儀器進行設置最優化。對您而言,您在操作這些步驟時,必須盡可能按照順序進行。

4.1 登錄進入 BD FACSDivia 軟體

- 1 啟動儀器,按第二章「開機程式」的描述進行操作。
- 2 登錄進入 BD FACSDivia 軟體。
- 3 選擇 "Cytometer>View Configurations"命令,查看現存儀器配置。我們在此要將 DNA 分析時需增加參數,如 PI、DAPI 加到現有儀器配置中。請先在現有 Configuration 名稱上按滑鼠右鍵, Duplicate 一新儀器配置、以 DNA_001 或其他代號命名之。
- 4 在此新儀器設置名稱上按滑鼠右鍵,點選 Edit; 或以滑鼠左鍵雙擊之。

- 5 按住鍵盤上的 Ctrl 鍵,點選 Parameters 選單中之 PE 及 PI 兩個選項,並將其拖 曳至 Blue D 探測器之位置。
- 6 點選 Set Configuration,將此儀器設置套用為現有設置。點擊 OK 離開視窗。

4.2 新建一實驗 DNA Analysis

7 要產生一個 Folder,先以滑鼠點選你的資料槽,然後點擊 Folder 標誌。

8 要產生一個 Experiment,先以滑鼠點選你新增的 Folder,然後點擊 Experiment 標誌。 或從螢幕上方選擇 "Experiment>>New Experiment" 來新增實驗。並在隨後出現的 「Experiment templates」方框中,選用「Blank Experiment with Sample Tube」。

9 更名功能。對 FACSDiva 軟體預設的檔夾名稱,皆可重新命名。在瀏覽器中應用滑鼠 點擊" Blank Experiment with…"實驗檔夾,然後在 Inspector 方框中輸入"DNA_001" 字元,按 Enter 來命名此新建的實驗檔夾。

E 🚺 DNA_001	11/11/06 1	
instr Setting	is (shi ngana	
	She 🖉 Inspect	10F
Global Shi Shared View	Experiment	Keywords
	Name:	DNA_001
	Owner	Administrator

10 "DNA_001" 檔夾己含有一 Specimen_001,如果你的實驗檔夾中沒有 Specimen,點 擊 Specimen 標誌新增之。 每個 Specimen 應至少有一試管 Tube_001,可點擊 Specimen_001 前+號展開,使 可見,如下圖。每個空白 Tube 左方有一相對應「指示箭頭」,等一下分析樣品時,必 須用滑鼠點擊,使其呈綠色,才能進行儀器參數設置。

4.3 螢光參數選擇

- 11 在瀏覽器中以滑鼠選擇此"DNA_001"檔夾下的"Cytometer Settings"(儀器設置)。單 擊"Inspector"視窗裏的"Parameters"頁面。用戶可在 Parameters 頁面上,去除多餘的 參數,我們在此練習去除 PerCP-Cy5-5, PE-Cy7, APC, APC-Cy7 等四個螢光參數, 留下 FITC 和 PE 螢光參數。
- 12 Parameters 頁面如下。單擊視窗裏的"Add or Delete"鍵來增加或刪除參數。如需更改參數,可點擊參數方格中右側箭頭,如 PE 可改成 PI。

nstr Par	. Settings ameters Thresho	old Ratio		Corr	pe
	Parameter	Volt		A	н
•	FSC	250	Г	V	Г
•	SSC	300	Г	V	Г
	PE	500	V	V	Г
	PI	500	V	V	Г
	PerCP-Cy5-5 PE-Cy7 APC	hệ	-		27.11

13 在此設定 PI 為 LIN 呈現方式,並增加 PI-W 參數,如下圖。

P II	nspector					
nstr	. Settings					
Par	ameters Threshold Ratio C	compensation				
	Parameter	Voltage	Log	A	н	W
•	FSC	250		M	Г	Г
•	SSC	300	Г		Г	Г
•	PL	500	Г	V	Г	V
•	FITC	500	V	V		

4.4 設計 Global Sheet 獲取範本

14 在空白"Global Sheet1"上,先選擇" Dot Plot"工具選項,並在獲取範本點繪製兩個 散點圖。(1) FSC-A vs SSC-A (2) Pl-W vs Pl-A,選擇" Histogram"工具,並在範 本點繪製一個散點圖(3) Pl-A histogram。右鍵單擊圖形坐標軸,可以修改圖形上的 坐標參數。

4.5 最優化儀器設置(Optimize Settings)

本節中,將通過以下五個步驟,學習儀器的最優化設置。

- 調節閾值,設置 PI=5,000
- 為特定的 DNA 螢光參數調節光電倍增管電壓值
- 為單細胞群體設門
- 調節 FSC 和 SSC 設置
- 其他螢光染料參數調節光電倍增管電壓值(optional 雙色)

以從事 DNA 單色分析為例,將使用以下螢光染料對照樣品管:(1) Unstimulated 對照, PI 單染,(2) Stimulated Positive 對照,PI 單染

決定設圖參數 PI

15 先確認瀏覽器中,綠色的獲取指示(■)位於"Tube_001";單擊 "Cytometer"視窗中的"Threshold"頁面。在此設定閾值參數 PI,並調節 PI 閾值 5,000。閾值的設置是為了排除非目標信號的干擾。

		💽 Cyto	meter	- FACSCanto	(VOO41)	
🖨 🛄 DNA_001	11/11	С	ompen	sation	Ratio	Laser
🕂 🤶 Instr Settir	ngs	State	us 📗	Paramete	ers	Threshold
🕀 🚰 Global Wo 🖃 📉 Specimen	rkshe _001			💽 Or	C And	
🖵 🧻 Tube_	001		Pa	arameter		Value
		FS	sc	1		5,000
		S	SC			
		PI			2	
		FI	SC SC		201	
			1.1.0			

16 DNA 分析採 Low 流速。

17 將陰性對照管裝入載樣埠。單擊"Basic Controls"視窗裏的"Acquire"鍵。此指令會使 軟體即時呈現儀器所測得的細胞資料,但不作記錄(Record)。調節 PI 電壓值 Voltage, 使 G0 細胞的 PI-A 值約在 50 (X1000) 位置。

為單細胞群體設門

18 在 Global Sheet1 工作圖上,選擇多角形圈選工具,並在 PI-W vs PI-A 圖上繪圈出「Single Cells」位置,形成「P1 門」。「P1 門」選定後,門內細胞會自動呈色。您可以移動它,或 是拖曳"門"上的任何一控制點,來改變"門"的大小和形狀。練習看看。

調整 FSC 與 SSC 電壓

19 單擊 "Instrument" 視窗中的" Parameters" 頁面。調節 FSC 和 SSC 電壓值,通常先調節 FSC,再調節 SSC。調節 FSC 和 SSC 電壓值 Voltage,使 Jurkat 單細胞族群(即紅色細胞群)能獨立成群,如下圖。完成後,再按一次 Acquire 鍵可中止獲取。

🗶 Cytometer - FACS	Canto (VOO41	1) 🔀	្រុទ្	ecimen_001-Tube_001
Laser Com Status Parar	neters	Ratio Threshold	ά 1,000) 10,250	
Parameter	Voltage .,	al al al	8	
 FSC 	407		48-	
 SSC 	432		0°1	
• FITC	530		Eg W	
• PE	473 🔽			
 PerCP-Cy5-5 	637 🔽		Ee	
• PE-Cy7	778 🔽		°=	
• APC	613 🔽			1.00 00 000 NO
APC-Cy7	641 🔽		ा	50 100 150 200 250
		<u> </u>		FSC-A (× 1,000)

20 用滑鼠點選 PI-A 直方圖。按滑鼠右鍵選擇"Show Population "命令;接著選擇"P1", 如圖。這樣一來,PI-A 直方圖形上就只顯示 P1Jurkat 單細胞族群。

21 微調節閾值。單擊 "Basic Controls "視窗裡的 Acquire 鍵。需要時,單擊 "Cytometer" 視窗中的" Threshold" 頁面。在此適當地提高 PI 閾值,以排除細胞碎片的干擾。

22 您已完成簡易 DNA 單色分析的儀器設置。可列印"Experiment"檔夾下的儀器設置。右 鍵單擊實驗文件夾中"Cytometer Settings"圖示,並在 Inpector 視窗中,選擇"Print" 列印設置,可貼到實驗筆記本中。

4.6 記錄實驗數據

準備工作

25 命名樣品與試管名。預設輸出檔名為 Specimen_001_Tube_001。可依此原則為您的 樣品系統化命名。

以滑鼠點選 Specimen_001,並在 Inspector 方框中輸入新名,如 Sample_0831,按 Enter。

🖵 🔰 Tu 🚨 Shored View	🖉 Inspector	
g Shareu view	Specimen Ke	eywords
	Name:	Sample_001
	Collected:	
	Global Sheet:	·

26 同理,以滑鼠點選 Tube_001,並在 Inspector 方框中輸入新 Name 名,如 PI_001,按 Enter。注意:Diva 軟體不可採用小數點當檔名。

	1.5	🔑 Inspector	
	😑 📉 Sample	Tube Labels Acra Kevy	vorde
	订 Tube_001	Labels Acq: Reyv	vorus
	😈 Tube_002	Name: CD3_CD4_(001
	🛄 Tube_003	Clobal Sharth	
🦾 🔒 s	hared View	Global Sheet.	<u> </u>
		Total # of Events:	

27 標記 Labels。選擇 "Experiment>Experiment Layout"命令。在"Experiment Layout"視窗上,您可以設置參數名稱,如下圖。這些名稱將出現在圖形的坐標軸, 以及所有統計結果中。在"Lable (標記)"頁面上,為各個螢光參數輸入標記字元。依 序將所有的螢光參數標示明白。

abels Keywords Acquisition				
abel Inti-histone H3 💌				
Specimen_001				
Tube_001	FSC	SSC	PI	FITC Anti-histone H3

28 在"Experiment Layout" 視窗裡"Acquisition (獲取)"頁面上,為 "PI_001" 採集 管,決定記錄細胞總數。在"Events to Record"的下拉功能表中選擇 "20,000", 或手工鍵入特定數字後,單擊 "OK"。

abels Keywor	ds Acquisition
vents to Record	10,000 💌
	10000
(=) e	20000
= 5-color e	30000
14	50000
Com	100000
	1000000
U 📜 U	2500000

29 在 Acquisition Dashboard 視窗,確認採用 Low 流速。並依實驗需求自行選定「Stopping gate」及「Storage gate」。

開始記錄資料

- 30 資料獲取過程中,請觀察 Global sheet1 中 PI-W/PI-A 圖形 P1 門圈選適當與否。如有 必要,可移動 P1 門位置。
- 31 將裝有 PI 螢光染色的 Sample_001 樣品管裝入載樣埠。在瀏覽器中,確認綠色的獲 取指示()) 位於 "PI_001"。可先單擊" Acquisition Dashboard"視窗上的" Acquire "鍵,待細胞開始在圖形上出現,並確認 P1 位置正確後,單擊" Acquisition Dashboard"視窗上的" Record "鍵。 記錄完 20,000 個細胞後,將樣品管從載樣埠上取下。
- 32 自動升冪試管名。在"Acquisition Dashboard"視窗上單擊"Next Tube",新建第 二個"Tube"。注意:此時新建的"Tube"自動被命名為"PI_002"。

在瀏覽器中,確認綠色的獲取指示(IPI_002"。將第二個樣品管裝入載 樣埠。可先單擊"Acquisition Dashboard"視窗上的"Acquire "鍵,待細胞開始在 圖形上出現,並確認 P1 位置正確後,再單擊"Record "鍵開始記錄。

33 重覆上述分析步驟,至分析完所有檢品。

4.7 資料輸出

34 DNA 數據一般建議輸出原始資料,再用 ModFit LT Cell Cycle 分析軟體處理。用滑鼠 點擊 DNA_001 檔夾,執行 File>>Export>>FCS files。

🛃 BD FACSDiva Software	
File Edit Mew Experime	nt Populations Worksheet
💾 Save 🛛 Ctrl+S	
Page Setup Print Preview Print Ctrl+P Administration	d Display All
Export •	Experiments
FTP 🕨	FCS files
Log Out	Statistics
Quit	Worksheet Elements
■ 040204 ■ 040204 ■ 040204 ■ a040204	FTP Summary File Experiment Template

35 選 FCS2.0 格式。

Export Parameter File Version FCS2.0 C FCS3.0	
Parameter Table	
Parameter	Parameter Type
FSC-H	⊙ Linear ⊂ Log ⊂ None
SSC-A	€ Linear ⊂ Log ⊂ None
PFA	⊙ Linear ○ Log ○ None
PFM	🕞 Linear 🧲 Log 🤇 None
Time	🖸 Linear 🧉 Log 🔿 None

36 選擇匯出路徑。

🖉 Save Export	
Directory Path	
D:\BDExport\FCS	
Save	cancel
Relative Dir Path	File Name
DNA\11-24-03_DNA\	test samples_PBMC.fcs
DNA\11-24-03_DNA\	test samples_Tumor,2f,PBMC.fcs
DNA\11-24-03_DNA\	test samples_Tumor.fcs

附註:Cell Cycle 分析 G0/1-S-G2/M 位相比例,請參考 ModFit LT 中文使用手册。

第五章、用 FACSDiva 分析數據

啟動系統 進行品質管制 最優化設置 記錄資料 分析資料 關閉系統↔

在本練習中,可以學習如何使用 BD FACSDvia 軟體, 敍述了如何利用"Global sheet"作為分析範本來建立圖形、門、和統計結果來分析已記錄的資料。練習之後,你將會產生像本手冊的範例分析圖形。

- 一 為目標細胞群體設門。
- 建立統計結果。
- 進行分析物件的品質管制 (例如,確認"門"已合理設置完畢)。
- 如果需要,列印或輸出結果。

開啟電腦。在出現的密碼登錄框中,輸入BDIS,按Enter。

開啟 BD FACSDiva 軟體。在登錄對話框中,輸入使用者名稱及密碼。

FACSDiva						
prtware	User Name: & Austin Lin Password: OK Qu					

5.1 新建一實驗

從螢幕上方選擇 "Experiment>>New Experiment" 來新增實驗。
 並在隨後出現的「Experiment templates」方框中,選用「Blank
 Experiment」。

General QC		
Name	Date	Name: Blank Experimen
Blank Experiment		
Blank Experiment with Sample Tube	12/19/05 4:50 PM	

2 我們匯入範例檔案來練習雙色分析。從螢幕上方選擇 "File>>Import>>FCS Files"來匯入檔案。 檔案路徑在 D:/BD EXPORT/EXPERIMENT/6 Color gating,請匯入 133.fcs 檔案。如已有收集過 實驗數據,亦可依此程序練習分析你自己的檔案。

匯入完成後

5.2 新建"分析範本" Global Worksheet

3 在瀏覽器上方,按"New Global Worksheet"工具選項。並點選 Global Sheet2,重新命名 成"Analysis"。

4 在 Analysis 範本點繪製兩個散點圖。(1) FSC-A vs SSC-A (2) FITC-A vs PE-A。以右鍵單擊 圖形坐標軸,可以修改圖形上的坐標參數。

5 以滑鼠點擊 tube_001 左側的指示箭頭, Analysis 面板上的散點圖上便會出現細胞分佈圖。

第一個圖形出現全灰圖形,是因為所選檔案中沒有 FSC-A 參數。以左鍵單擊圖形坐標軸,可以 修改圖形上的 X 坐標參數成 FSC-H,便會出現正常細胞分佈圖。

6 點擊螢幕上方 snap-to-gate 功能鈕,並在 FSC-A 對 SSC-A 圖上淋巴球位置上單擊一下, Diva 軟體會自動繪出該族群的輪廓,如下圖。

7 以滑鼠選 FITC-A 對 PE-A 圖,並在圖上空白處單擊右鍵,選擇「Show Populations」,再選「P1」。

P		
6 color LnL-Tube_001	Show Population Hierarchy	Ctrl+G
°27	Create Statistics View	Ctrl+R
All Events	Show Populations	•
	Scale to Population	×
	Show Gate	Þ

8 FITC-A 對 PE-A 圖現只呈現淋巴球 P1,如下圖。如需進一步統計,可利用螢幕上方四象限標記 工具,並在該圖劃出陰陽界限。

9 現在我們要產出上圖例的四象限統計,以滑鼠點擊該圖,並在圖上空白處,單擊右鍵選擇「Create statistics View」。

10 如需編輯統計產出項目,以滑鼠右擊統計表空白處,選「Edit Statistics View」。

Experiment Name:	Experimen	t_001		1	
Specimen Name:	6 color LnL			Edit Statistics Via	ew
Tube Name:	Tube_001				
Record Date:	Jan 1, 1970	0 12:00:00 A	M	💥 Čut	Ctrl+X
\$OP:				Сору	Ctrl+C
			CD2 FITC-A	Delete	Delete
		Of Develop	bieren i	March 1	

11 選擇欲輸出統計的有意義族群,P1,Q1~4 勾選處在左前方格。

er Populations Statistics								
Show Population	Populations	All	Parent Na	I⊽ #Events	I⊽ %Parent	Grand P	∏ %Tota	
Г	All Events			Γ			Γ	
V	P1			V	V			
V	Q1			V	V	Г	Г	
V	Q2			V	V	Γ	Γ	
V	Q3	Г		ম	2	Г	Г	
V	Q4			V	V		Π	
	Decimal Places				1	1	1	

12 在 Statistics 頁面可增刪輸出的項目及針對那些參數自由勾選。

Parameters	Г			Г		Г	Г		
Parameters	All	Median	Geometri	Mean	CV	Max	Min	SD	Mode
FSC-H									
SSC-A	Γ			Γ		Г	Г	Г	
CD2 FITC-A				V		Г	Γ		
CD7 PE-A	Г	E		V		Г	Г	Г	
CD3 PerCP-Cy5-5-A	Γ					Г	Π		
CD4 PE-Cy7-A	Г	E		Γ		Г	Г	Г	
CD5 APC-A	Γ					Г	Γ		
CD8 APC-Cy7-A	Г			Г		Г	Г	Г	
FSC-A (disabled)			F		Γ.	Г		Г	F
Time	Г	Г	Г	Γ	Г	Г	Г	Г	
Decimal Places	0	0	0	0	1	0	0	0	0

5.3 列印結果

5.4 輸出統計值

14 輸出統計值到 CSV 檔。先點選欲輸出統計值表,選擇 File >> Export >> statistics...。

15 在出現的對話框中,鍵入適當檔名,如 test1,按 Save。

Save in:		T	k 🕬 🛄 🛛
à	austin 🔋 test1		
	austin2 Kg		
My Recent D	File name: test1.csv		Save

5.5 輸出圖譜

- 16 如需輸出圖像檔,可先選到適當檔案,然後可按著 Shift 鍵,然後以滑鼠連續點選有意輸出的圖 譜。
- 17 選完圖譜後,執行 File >> Export >> Worksheet Elements。

18 在出現的方框中,指定輸出路徑或接 受預設路徑後,按 Export。

D:\BDExportWVorksheet		Brow
	Export] a
	D:\BDExport\Worksheet	D:VBDExportWVorksheet

5.6 批次分析

- 19 您必須很快掃讀整圖實驗,檢查您的圖形,看細胞群體級別是否適當、確認 "P1 門"是否已設置妥當,細胞群體是否正確、並確認需要輸出的統計結果項目。
- 20 選定欲進行批次分析的實驗或檢體,然後在 Inspector 方框中,選「Analysis」當範本。

🔋 🚊 📉 6 color LnL 🔥
🕀 🖟 Tube_001
🕀 🕞 Tube_002
🖶 🕞 Tube_003
🖮 🖟 Tube_004

pecimen	(eywords
Name:	6 color LnL
Collected:	
Global Shee	t 🔽
	Global Sheet1

21 以滑鼠右 6 Color LnL,然後選「Batch Analysis」,並在出現的方框中選擇要不要 Print,要不要 Statistics,並指定存檔路徑如下圖。然後按 START。

Batch Analysis	6 color LnL → J Tube_001 → J Tube_002 → J Tube_003 → J Tube_004 xperiment_dna tanual Comp ad View	1/ 1/ 1/ 1/ 1/ 2/	Cut Copy Paste Paste Paste With Data Delete Rename Duplicate Without Data Batch Analysis Wew Tube
💽 Auto	Output To Printer	V] Statistics
View Time: 0 🔽	🔽 Save as PDF		Freeze Biexponential Scales
🔘 Manual	Add Report		Use Preferred Global Worksheet
PDF Filename: >sktop	\Batch_Analysis_14092	01116:	1928.pdf Browse View PDF
Export Filename: >sktop	\Batch_Analysis_14092	01116:	1928.csv Browse
Status:		0%	
	Start	<u>P</u>	ause Co <u>n</u> tinue Close

程式完成通知

Í	Betch Analysis Complete
	The batch processing is finished. Worksheet PDF output to "C:\Documents and Settings\10071750\Desktop\Batch_Analysis_14092011162633.pdf". Statistics output to "C:\Documents and Settings\10071750\Desktop\Batch_Analysis_14092011162633.csv".
	OK

5.7 Log Out 退出軟體

22 在瀏覽器中關閉所有實驗,以滑鼠點擊實驗檔夾前的「-」號即可。FACSDiva 軟體會自動儲存所 有變更。

23 從螢幕上方執行 File >> Quit 或 File >> Log Out, 並在隨後出現的方框中選 Quit 便可離開軟體。

File	Edit	View	Experiment	
	Sav	e	Ctrl+S	
P	age Se	tup		
P	rint Pre	eview		
Print			Ctrl+P	
A	dminis	tration.	.u.	
I	mport		۱.	
Export			•	
L	og Out			
Ç	uit		*	

5.8 用微軟 Excel 讀取已輸出統計表

25 執行 Excel。程式集 >> Microsoft Excel。

26 執行開啟舊檔,並在已知的路徑中 D:\BD Export\Statistic 尋找有意義的 CSV 檔。

當案類型(I):	所有 Microsoft Excel 檔案		-
	所有檔案 所有 Microsoft Excel 檔案 Microsoft Excel 檔案 Web 畫面 文字檔案 査詞檔	Ą	

27 以分隔符號號,選取下一步。

匯入字串精靈 - 步骤	3之1
字串剖析精靈判定資料 若一切設定無誤,諸淡	料類型為 固定欄寬。 選取 [下一步] ,或選取適當的資料類別。
 請選取最適合剖析您 ● 分隔符號(型) = 	题的資料的檔案類型: - 用分欄字元,如逗號或 TAB 鍵區分每一個欄位 。
○ 固定寬峻(W) -	- 每個欄位固定寬度,欄位間以空格區分。

30 完成圖。可進一步處理繪圖。

	Α	В	С	D	E	F	G
1	Experimen	Specimen 1	Tube Name	Record Date	\$OP	P1 #Events	P1 %Paren
2	Experimen	6 color LnI	Tube_001	1970/1/1 00:00		1941	19.4
3	Experimen	6 color LnI	Tube_002	1970/1/1 00:00		2228	22.3
4	Experimen	6 color LnI	Tube_003	1970/1/1 00:00		2418	24.2
5	Experimen	6 color LnI	Tube_004	1970/1/1 00:00		2289	22.9
6							

附錄一、常用螢光染劑 (PMTs 以標準 4-2 規格為例)

測量參數	螢光染劑	吸光波長(nm)	螢光波長(nm)
標示抗體用染劑	Fluorescein, FITC	490	520 (Blue E)
	Phycoerythrin-R, PE	495	578 (Blue D)
	Peridinin-chlorophyll,	490	677 (Blue B)
	PerCP		
	PerCP-Cy5.5	490	(Blue B)
	Cy-Chrome	495	670 (Blue B)
	PE-Texas Red	495	620 (B or D)
	PE-Cy5	495	670 (Blue B)
	PE-Cy7	490	781 (Blue A)
	Allophycocyanine	650	660 (Red C)
	APC-Cy7	650	781 (Red A)
核酸含量分析	Ethidium Bromide	510 (+ds DNA)	595 (Blue D)
	Propidium Iodide	536 (+ds DNA)	623 (B or D)
	Acridine Orange	480 (+ DNA)	520 (Blue E)
		440-70 (+ RNA)	650 (Blue B)
	Thiazole Orange	509 (+ RNA)	533 (Blue E)
細胞 Viability	Propidium Iodide	536	623(B or D)
	YOPRO-1	480	515 (Blue E)
	Acridine Orange	480	520 (Blue E)
	7-AAD	488	670 (Blue B)
細胞膜電位	DiO-C6 (3)	485	510 (Blue E)
Mitochondrial	Rhodamine 123	485	546 (Blue E)
膜電位			
細胞內 pH 值	BCECF-AM	488	Ratio 520/620
	SNARF1-AM	514	Ratio 587/640
細胞内鈣濃度	Fluo4-AM	488	528 (Blue E)
	Calcium Green-1	488	530 (Blue E)
	Fura Red	488	660 (Blue B)
H2O2 sensitive	Dihydrorhodamine 123	505	534 (Blue E)
	DCFH-DA	505	535 (Blue E)
O2- radical sensitive	Hydroethidine	505	600 (Blue D)
Esterase sensitive	Fluorescein -DA	495	525 (Blue E)

雷射	波長	最小功率	常用螢光染料
	(nm)	(mW)	
Coherent ^R Sapphire [™]	488(藍色)) 20	FITC, PE, PE-Texas Red,
固態			PerCP, PerCP-Cy5.5,
			PE-Cy7, PI
JDS Uniphase [™] HeNe	633(紅色)) 17	APC, APC-Cy7
氣冷式			
Point Source iFlex2000	405(紫色) 30	Pacific Blue, AmCyan
		·	, - ,

附錄二、Optical Configurations

雷射光源及對應接收器螢光波長表 (圖示 4-2-2 規格):

	PMT	LP Filter	BP or LP Filters	Fluorochromes
	Position	(nm)	(nm)	
488 Laser	Blue A:	735	780/60	PE-Cy7
	Blue B:	655	670LP	PerCP,
				PerCP-Cy5.5
	Blue C:	610	Blank filter	N.A
	Blue D:	556	585/42	PE
	Blue E:	502	530/30	FITC
	Blue F:	Blank filter	488/10	SSC
633 Laser	Red A:	735	780/60	APC-Cy7
	Red B:	685	Blank filter	N.A
	Red C:	Blank filter	660/20	APC
405 Laser	Viiolet A:	502	510/50	AmCyan
	Violet B:	Blank filter	450/50	Pacific blue

	РМТ	LP Filter	BP or LP Filters	Fluorochromes
	Position	(nm)	(nm)	
488 Laser	Blue A:	735	780/60	PE-Cy7
	Blue B:	655	670LP	PerCP,
				PerCP-Cy5.5
	Blue C:	610	616/23	PE-Texas Red
	Blue D:	556	585/42	PE
	Blue E:	502	530/30	FITC
	Blue F:	Blank filter	488/10	SSC
633 Laser	Red A:	735	780/60	APC-Cy7
	Red B:	685	712/21	Alexa Fluor-700
	Red C:	Blank filter	660/20	APC

雷射光源及對應接收器螢光波長表 (圖示 5-3 規格):