ForteBio

Label-Free Biosensor Technical Solutions from the ForteBio Octet Platform

September 22, 2009

Agenda

- Label-Free BLI Technology
- Octet Applications in Quantitation
- Octet Applications in Kinetics

Reasons to Adopt Label-Free Technology

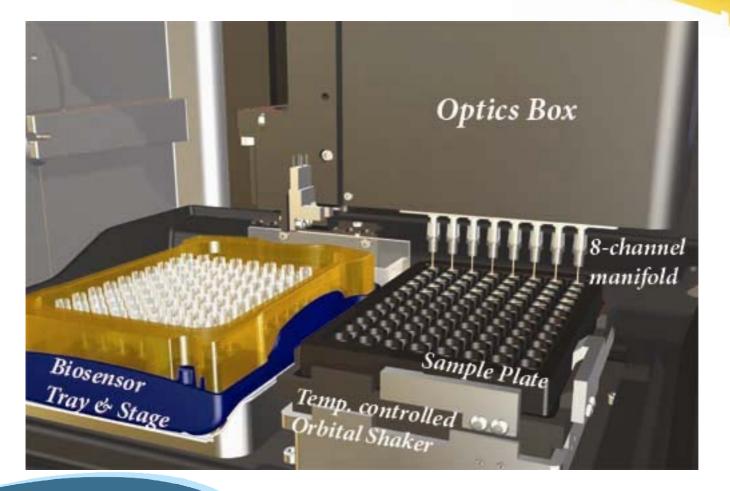
- Improve time to result
 - Reduce sample preparation
 - Eliminate long incubation and wash steps
 - Simplify assay development time
- Reduce costs

- Reduce labeling reagents
- Reduce required number of Ab pairs
- Reduce labor time required to run assay
- Increase accuracy and precision of measurement
 - Measure direct binding events
 - Enables real-time detection and high content information
 - Eliminate false results due to labeling interferences

The Octet Platform: Fast, Accurate, EASY!

- Very easy to use with short set-up and run times
 - Label-free and fluidics-free platform
 - Dip and read BLI (biolayer interferometry)-based technology
- Broad spectrum of kinetic applications
 - Screening
 - Characterization
 - Epitope Binning
 - Method Development
 - Automate up to 96 samples at a time
- Ability to measure in crude samples and in DMSO (up to 10%)
- It also does quantitation!

Octet RED = <u>Rapid Extended Detection</u>

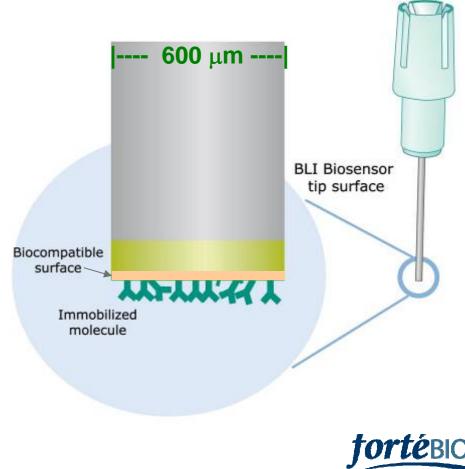


• Extended Sensitivity

- 8 higher resolution spectrometers
- RMS noise 0.003 nm
- New Super SA Biosensors
- Faster sampling rate
 - Data taken for 8 channels in parallel
 - Data acquisition 5Hz (0.2 Sec/pt)
- Extended Range
 - mM to pM affinities
 - Small molecules and peptides
 - Dynamic Range LLOD \geq 10 ng/mL

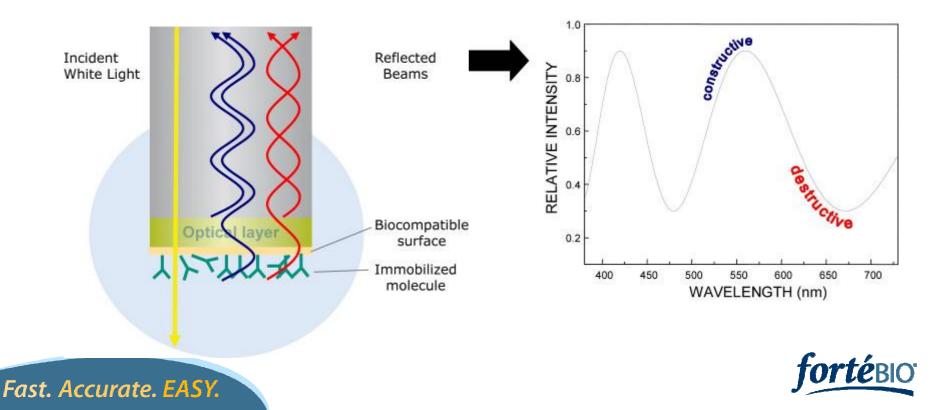
The Octet Instrument Enabling rapid sample analysis

fortébio

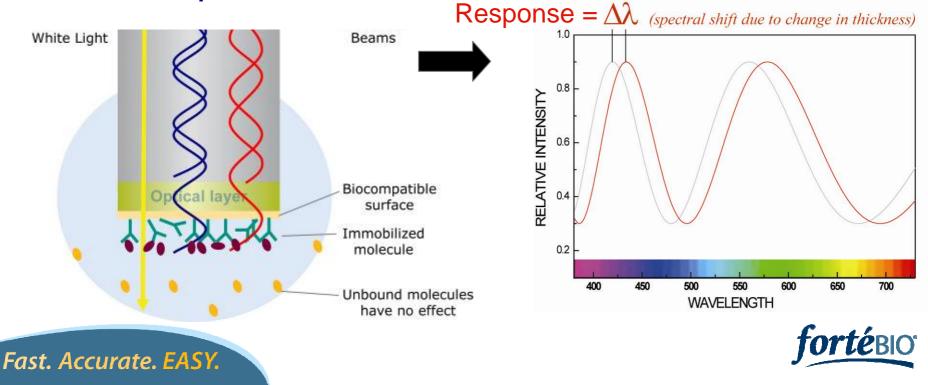

96-well

pre-wet plate

Biosensors

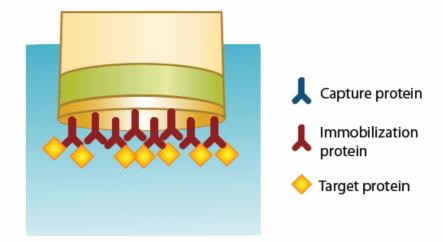

BLI Surface Chemistry Bio-Layer Interferometry

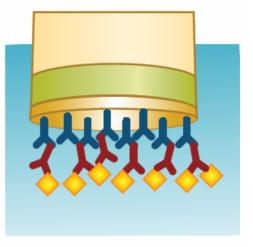
- The Octet Biosensor consists of a polished fiber optic embedded into a polypropylene hub with a sensor-specific chemistry at the tip
 - Two-dimensional binding surface
 - Biocompatible Matrix
 minimizes non-specific binding
 - High uniformity across the sensor surface
 - Non-denaturing


<u>BioLayer</u> Interferometry (BLI)

• A layer of molecules attached to the tip of an optic fiber creates an interference pattern at the detector.

<u>BioLayer</u> Interferometry (BLI)


- A layer of molecules attached to the tip of an optic fiber creates an interference pattern at the detector.
- Any change in the number of molecules bound causes a measured shift in the pattern



Surface Chemistry of Biosensors

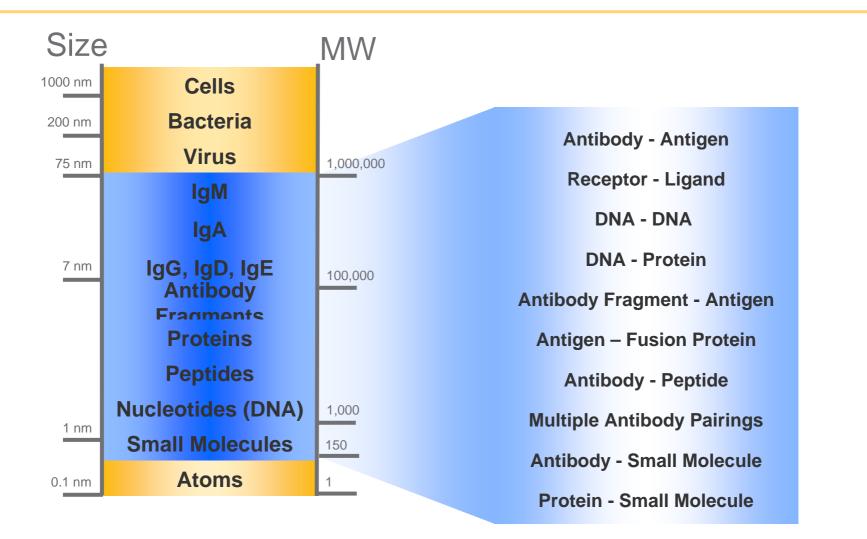
Direct immobilization

Capture-based immobilization

Amine Reactive(AR) or Streptavidin(SA) Biosensors Anti-hIgG Fc Capture Biosensors

Biosensor Chemistry Options

Application	Sensor Type	Regeneration
Quantitation	Anti-Human IgG Fc	No
	Anti-Murine IgG (Fab')2	No
	Protein A	Yes
	Streptavidin (SA)	Yes
Screening	Streptavidin (SA)	Yes
or	Super Streptavidin (SSA)	Yes
Kinetics	Amine Reactive (AR)	Yes
Kinetics	Aminopropylsilane (APS)	Yes
	Anti-hlgG Fc Capture Surface (AHC)	Yes


Some regeneration protocols may be dependent on chemistry of

protein attached to the biosensor.

Octet Versatility in Interaction Analysis

What does the Octet do?

Quantitation Applications

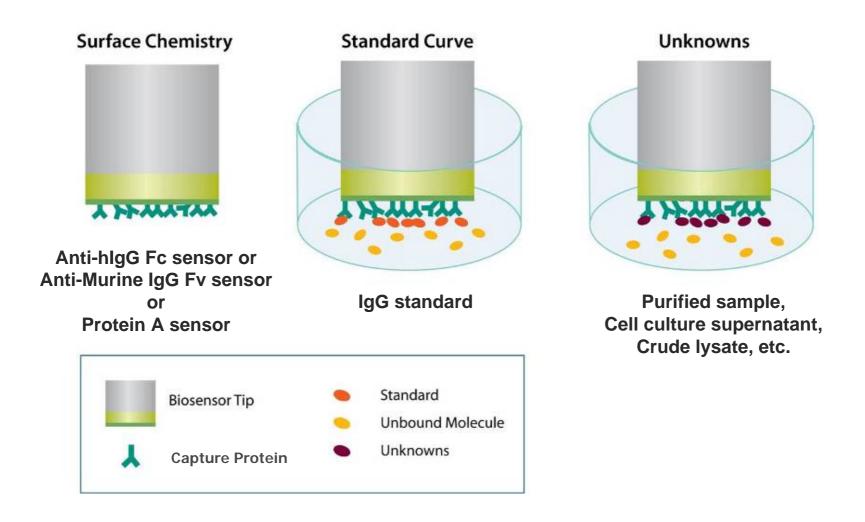
- IgG quantitation
- Protein quantitation

Kinetics Applications

Fast. Accurate. EASY.

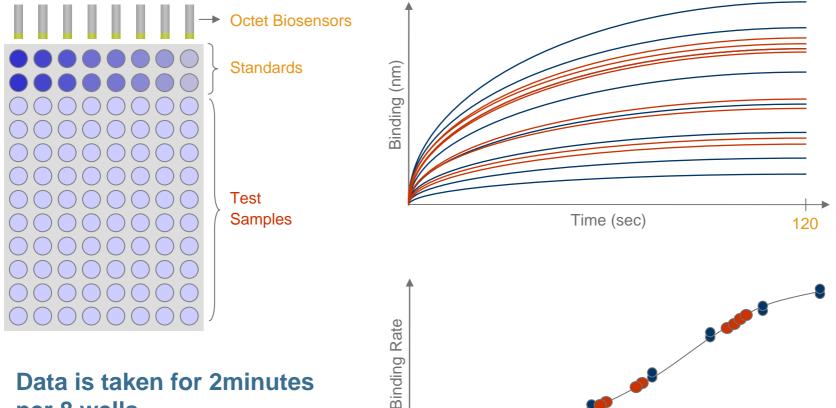
- Affinity characterization
- Measure kinetic constants
- Rank order affinities

Cell line development Bioreactor process optimization Production titer monitoring


Rank ordering of clone selectionKinetic characterizationEpitope binningAntibody pair matching

Octet應用:快速蛋白質定量 □ Rapid and high-sensitivity titer/IgG quantitation

Octet Automated Workflow for Quantitation



Quantitation biosensors allow flexibility in applications

Biosensor Name	Immobilization Chemistry	Potential Applications
Protein A	The protein A immobilized on the biosensor binds to the Fc region of human IgGs. Will also bind to the Fc of many subtypes of mouse and rabbit IgG.	Concentration determination of hIgG in buffer, serum free media, and other crude mixtures which do not contain other species IgGs.
Anti-murine IgG Fv	Binds specifically to the F(ab')2 portion of mouse and rat IgGs.	Concentration determination of mouse or rat IgG in buffer, serum free media, serum containing media and other crude mixtures.
Anti-human IgG Fc	Binds specifically to the Fc portion of human IgGs.	Concentration determination of hIgG in buffer, serum free media, serum containing media and other crude mixtures.
Streptavidin (SA)	Streptavidin coated biosensor with a high binding capacity for biotinylated proteins, peptides and nucleic acids.	As a base sensor for immobilizing a biotinylated antibody or protein that binds to a specific target. The protein functionalized sensor can then be used to construct a tailored quantitation assay.

Octet automated workflow for quantitation -No plate coating. No sample prep. No washes.

- Data is taken for 2minutes per 8 wells
- \rightarrow 96 wells in ~30 minutes
- → 1 step, no washing

Fast. Accurate. EASY.

Concentration

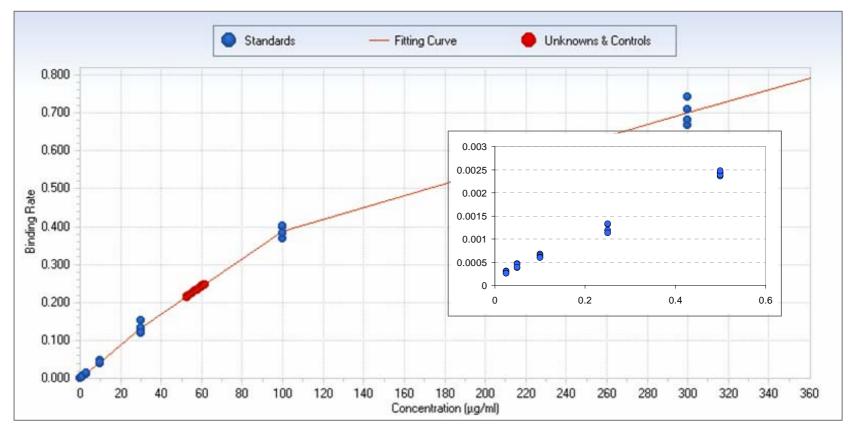
High sensitivity titer analysis of expressed human IgG

• Issue:

- Need a rapid assay for analysis of expression clones early in development
- Requires high sensitivity since expression levels at this stage are at the 50-1000 ng/mL range

• Solution:

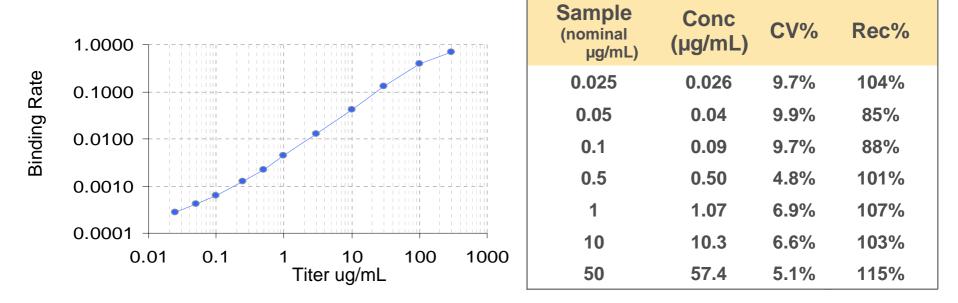
Fast. Accurate. EASY.


 Use the <u>Octet RED</u> and Protein A biosensors in a higher sensitivity mode (uses higher flow rate and longer assay time)

High sensitivity titer analysis

Fast. Accurate. EASY.

Calibration curve shown covers 25 ng/mL to 300 µg/mL range

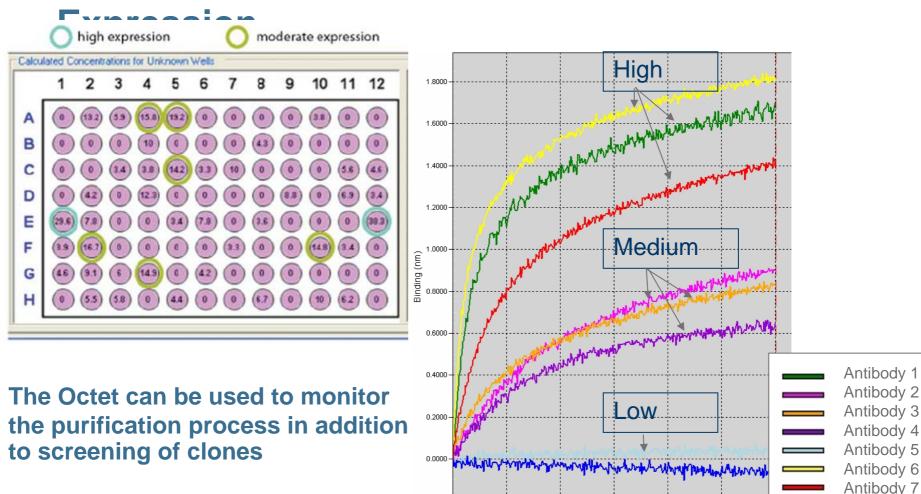

Higher sensitivity mode throughput is a 96 well plate/per hour

Good precision throughout the range

Calibration curve shown covers 25 ng/mL to 300 µg/mL range 1000 rpm, 5 minutes per column read time, Streptavidin sensor

Fast. Accurate. EASY.

Method parameters are flexible allowing desired dynamic range and sensitivity.


No additional sample, plate, or instrument preparation.

Higher sensitivity can be achieved with longer incubation.

Wide dynamic range allows less dilutions.

Rapid Screening of Antibody Clones for

-0.2000

Fast. Accurate. EASY.

100

200

300

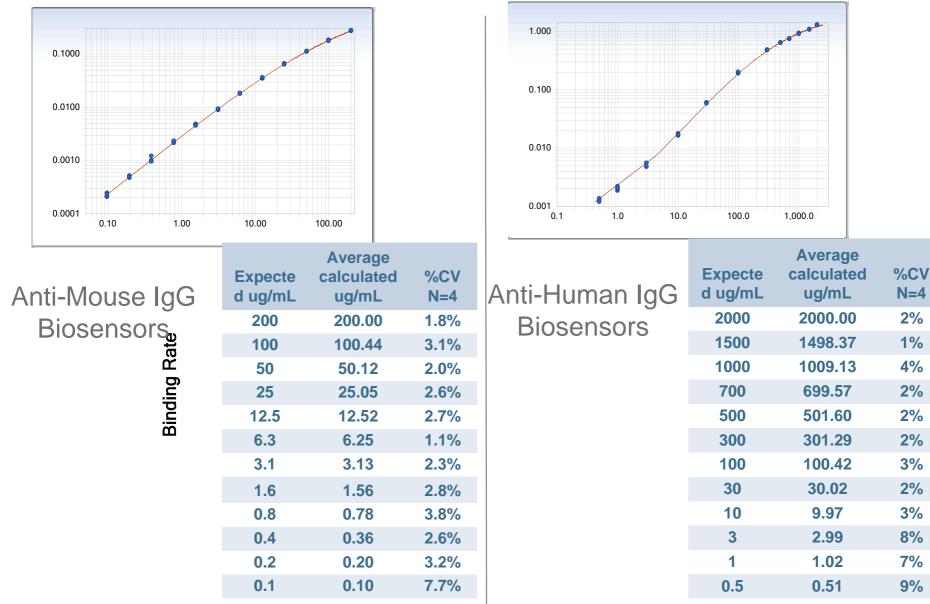
Time (seconds)

Rank Antibody-Producing Cell
 Lines

400

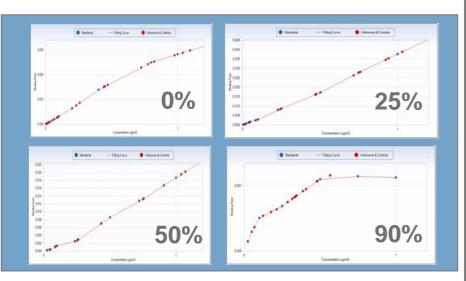
500

Media blank


Higher sensitivity mode for hlgG

- Extends assay range down to ~25 ng/mL
- Throughput is one 96 well plate per hour

- No washes. No plate prep. No sample prep needed
- Good accuracy and precision throughout extended range


Quantitating IgGs with Octet RED

O a m a a m two than (way loo l)

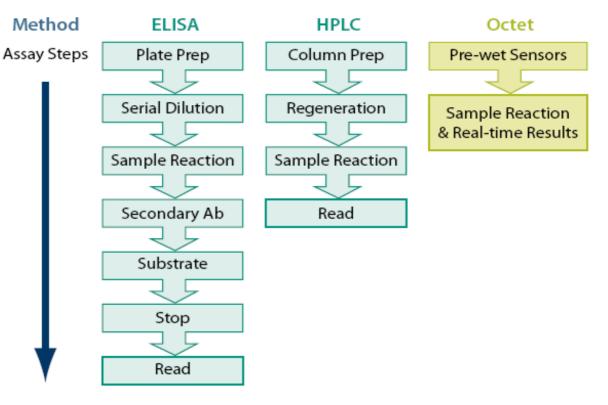
Therapeutic Proteins in Human Sera Samples

Biotinylated Capture Antibody on Streptavidin HBC Sensors Detects Therapeutic Protein in the Presence of 25-90% Human Serum

CVs for Therapeutic Protein Levels in Human Serum

% Human Serum	Dynamic Range Tested	%CV Range
0%	10-1,000 ng/ml	3.7-12%
25%	10-1,000 ng/ml	3.7-10%
50%	10-1,000 ng/ml	1.5-10%
90%	10-1,000 ng/ml	6.0-25%
		Jortebio

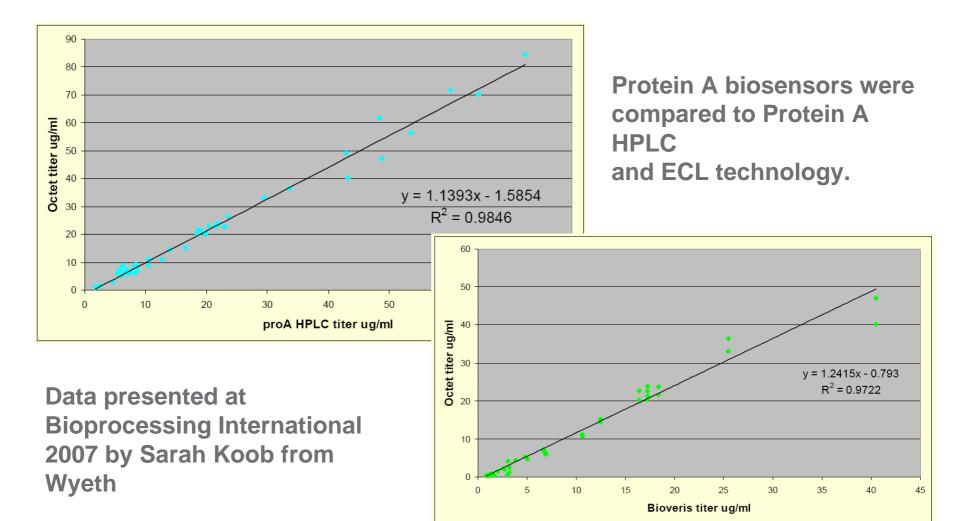
Octet應用:改善蛋白質定量流程 □ Faster Quantitation for Process Development



Faster Quantitation is Ideal for Process

ELISA and HPLC are typically used to monitor antibody expression.

Development


Octet platform allows faster feedback on reactor status and reduces risk of production losses.

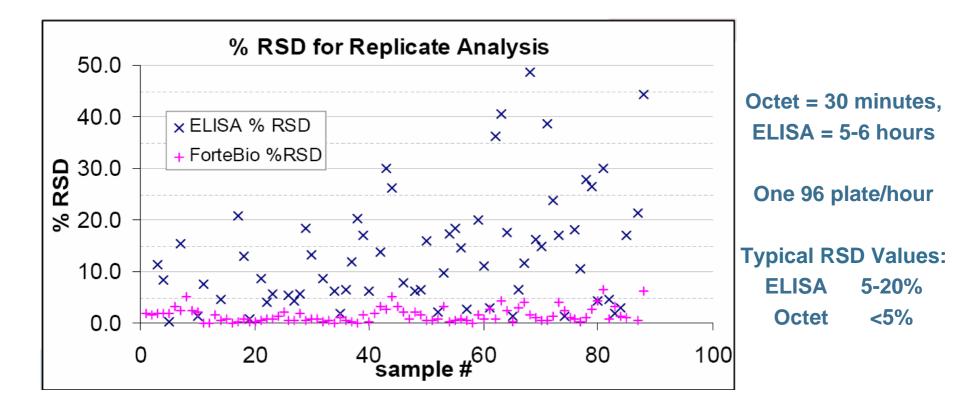
	ELISA	HPLC	Octet
Labor Time	3 hrs	0.5 hrs	<0.2 hrs
Total Time to Results	> 6 hrs	10 hrs	0.5 hrs

Accuracy Correlates Between Octet, HPLC, and ECL

Reproducible Throughout 10 Plate Screening Assay

Controls	150	50
P1 row A	129.4	47.8
P1 row H	138.4	53.6
P2 row A	130.2	46
P2 row H	134.3	47.7
P3 row A	138	45.2
P3 row H	152.3	48.6
P4 row A	135.7	44.8
P4 row H	137.9	46.1
P5 row A	147.8	45.3
P5 row H	139.4	48.6
P6 row A	123.4	45.1
P6 row H	141.4	46.2
P7 row A	125.5	47.5
P7 row H	136.2	51.2
P8 row A	131.2	41.9
P8 row H	130	45.1
P9 row A	140.6	44.2
P9 row H	137.8	45.2
P10 row A	133.8	45.2
P10 row H	147.4	46.6

Fast. Accurate. EASY.

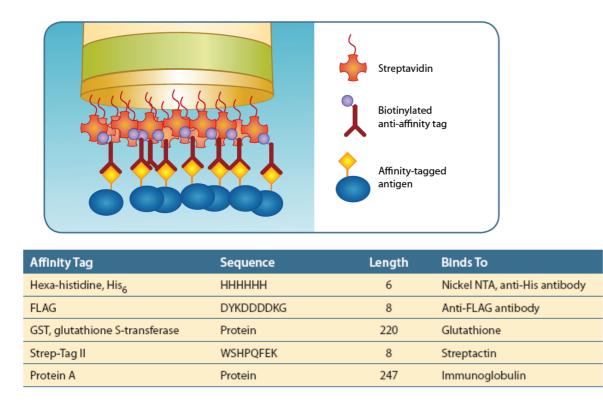

mean	137	47
% recovery	91	93
%CV	5.4	5.5

- Controls reproducible across all 10
 plates
- Low variability of 5-6% CV within controls

Data presented at Bioprocessing International 2007 by S. Koob

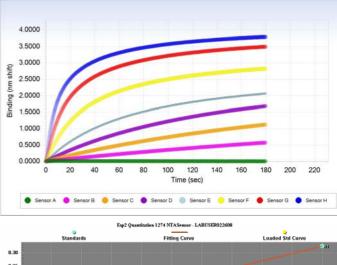
Octet Reproducibility Comparison to ELISA

Data presented at IBC Antibody Production, 2008 by Keith Davis from Pfizer MO.


Technology Improvements Achieved by Octet

Improvements over HPLC and ELISA

- Determine 96 concentrations in 30 minutes
- Very little sample prep needed
- Fewer dilutions due to wide dynamic range
- Crude sample matrices are easily used without interference
- Excellent correlation to HPLC and ELISA data
- Higher sensitivity than HPLC
- Better CVs than ELISA
- No fluidics allows no maintenance or instrument set up time
- Samples are recovered


Affinity-tag mediated capture

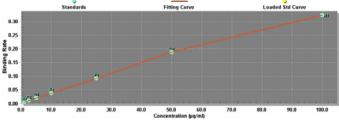


Table 1. Affinity tags successfully used on the Octet RED andOctet QK Systems.

Fast. Accurate. EASY.

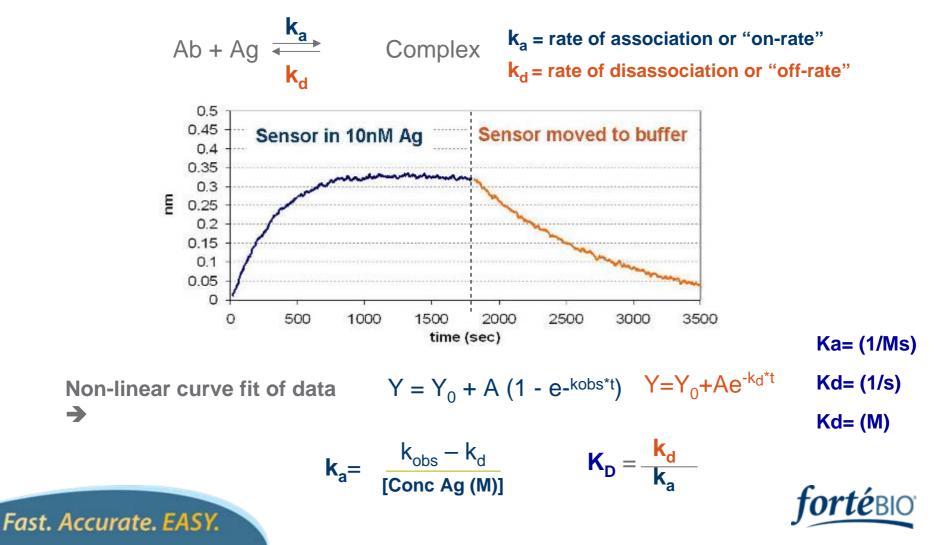
His-Tagged Protein Quantitation

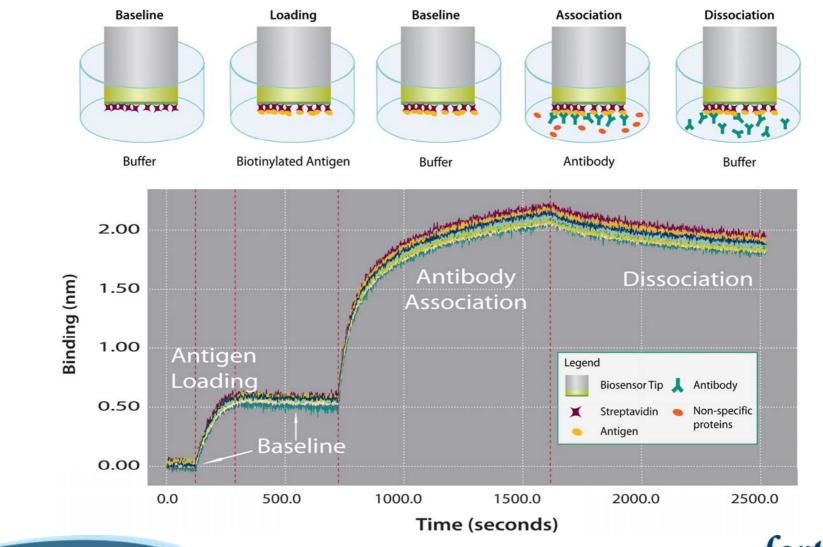
It is possible to create specific biosensors for quantitation of almost any protein.

Octet Applications in Kinetics

- Providing full kinetic characterization of proteins, peptides, and small molecules
- Performing rapid screening for single kinetic parameters
- Enabling fast and easy assay development

Kinetic Characterization Biosensors Allow Flexibility


Biosensor Name	Immobilization Chemistry
Amine Reactive (AR)	Amine functionalized surface to allow for covalent coupling of proteins <i>via</i> EDC/NHS mediated amide bond formation
Super Streptavidin (SSA)	Streptavidin coated biosensor with a very high density of biotin binding sites. Immobilizes biotinylated proteins, peptides, and small molecules to form a stable
Streptavidin (SA)	High density streptavidin coated biosensor. Immobilizes biotinylated proteins, peptides and nucleic acids to form a stable surface.
Anti-hIgG Fc Capture (AHC)	Immobilization of hIgG or other human Fc containing proteins through the human Fc region.
Aminopropylsilane (APS)	Adsorption of proteins and membrane fractions through hydrophobic moieties.



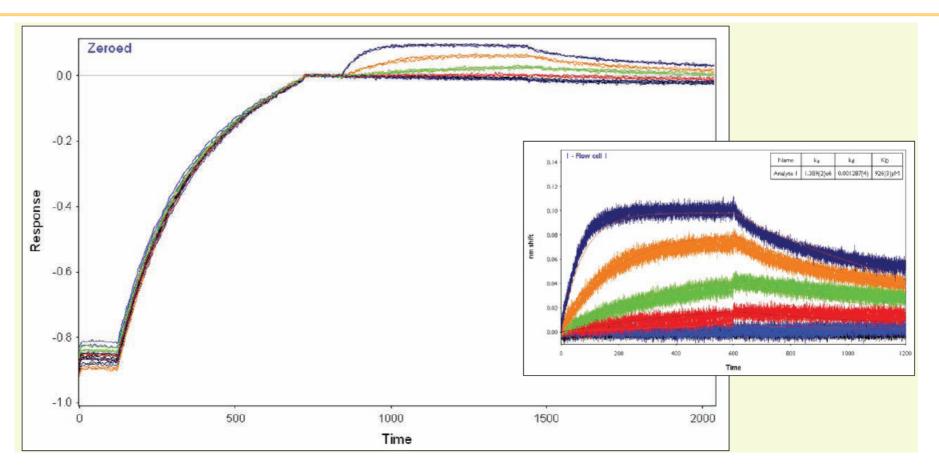
Antibody Binding Kinetics: The Basics

For simple 1:1 binding:

Octet Automated Workflow for Kinetics

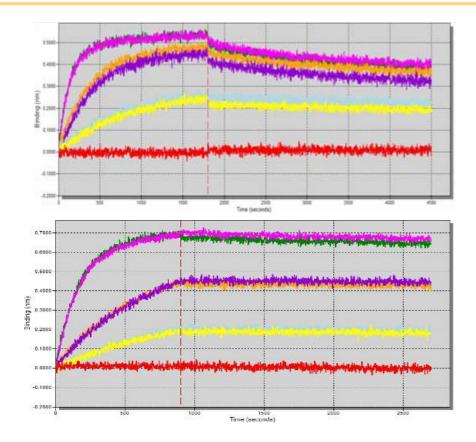
Example Octet Automated Workflow for Kinetics

Image: Constraint of the constraint


(u) Baseline Loading Baseline Dissociation Dissociation

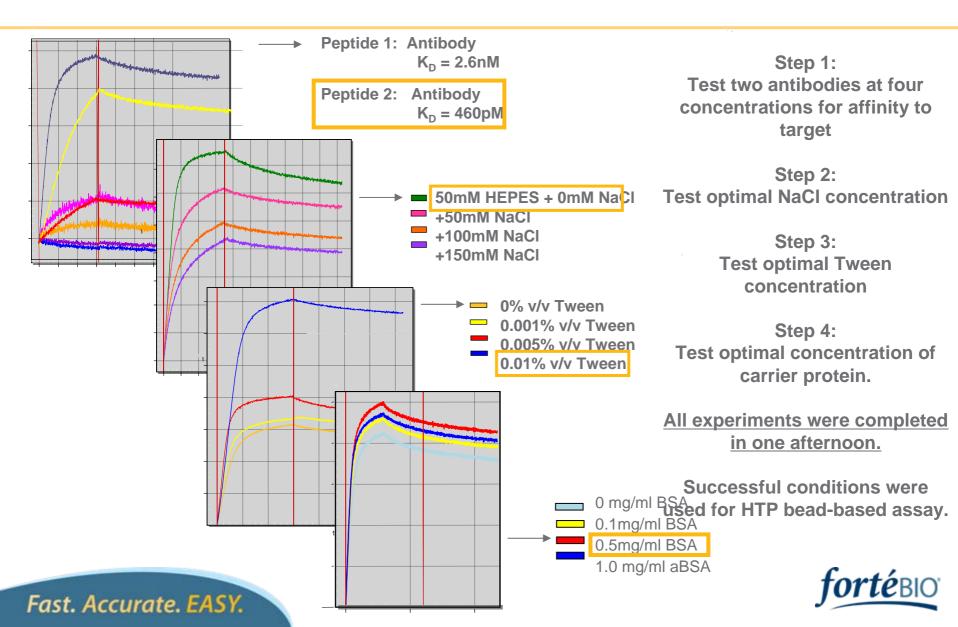
- 8 samples can be analyzed in parallel
- Data is displayed in real-time
- Measure on-rate and off-rate
- Experimental protocols can be customized during sample programming

Reproducibility: Protein Kinetics


Fast. Accurate. EASY.

 Three replicate runs on the Octet RED. Data shown is for the loading of an mouse anti-IL2 antibody onto an anti-mouse IgG surface and concentration titration (inset) of IL-2. The IL-2 was run at 3, 0.9, 0.3, 0.09, 0.03 and 0 nM in triplicate

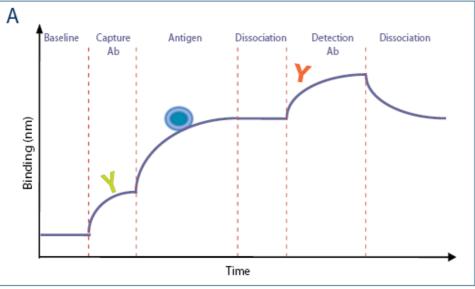
Easily Determine Full Kinetics Characterization


Mutant 1	Full Analysis With <mark>3 Conc</mark>	Screening (20nM only in duplicate)
ka (1/Ms)	2.84E+05	3.21E+05
kd (1/ <mark>s</mark>)	8.59E-05	9.46E-05
Kd (M)	3.02E-10	2.95E-10

Mutant 2	Full Analysis With <mark>3 Conc</mark>	Screening (20nM only in duplicate)
ka (1/Ms)	2.56E+05	2.73E+05
kd (1/ <mark>s</mark>)	2.41E-05	2.59E-05
Kd (M)	9.41E-11	9.49E-11

Data provided by Genitope

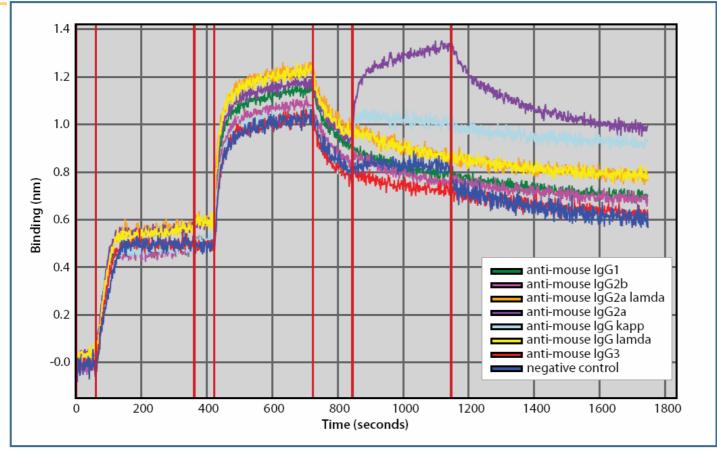
Rapidly Develop Optimal Assay Conditions



Octet應用:藥物篩選與檢測套組開發 Antibody and Antigen Pairs Selection Epitope Mapping

Selection of multiple Antibody and Antigen Pairs for Immunoassay Development

- Capture and detection antibodies must exhibit a high degree of specificity
- Antibody-analyte interactions must be of high enough affinity to withstand wash protocols
- Antibodies must bind to non-overlapping, non-interfering


Fast. Accurate. EASY.

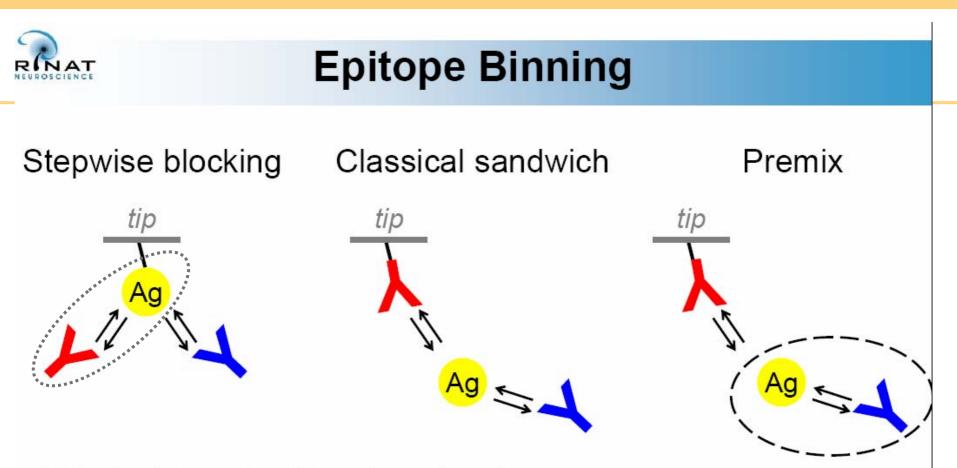
Graphic representation of sequential binding as measured by on the Octet System. **forté**BIO

Rapid Screening of Antibody Pairs by using BioLayer Interferometry

Antibody Isotyping Application on the Octet

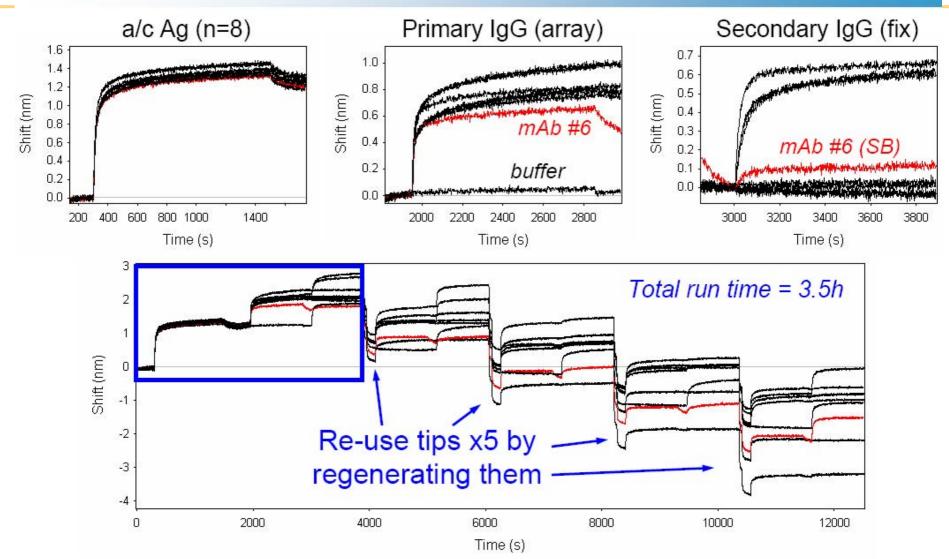
From the pattern of the binding, the mIgG sample was correctly identified as mIgG2a kappa.

Case Studies 1: Using Octec Experience from Rinat Pfizer

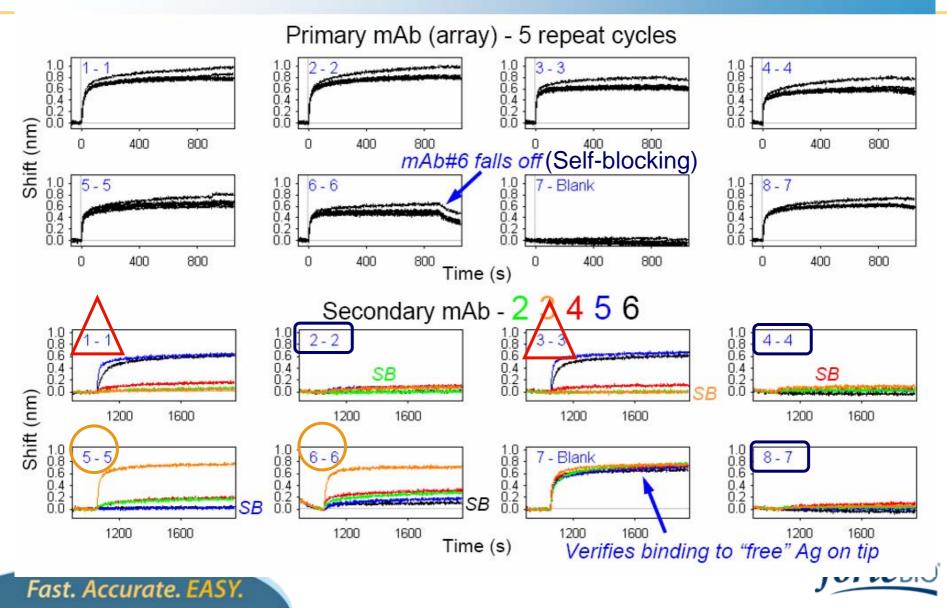


Introducing the Octet as a reliable novel biosensor in characterizing protein/protein interactions Yasmina Abdiche, PhD Rinat Pfizer, South San Francisco, CA

1. Each strategy has its pro's and con's


- 2. Consider MW and aggregation state of Ag
- Improve unattended throughput by preparing surfaces offline using "batch immobilization"

Fast. Accurate. EASY.


Stepwise Blocking

Stepwise Blocking

Confirm 3 Epitope Bins Using Two Blocking Stratagies

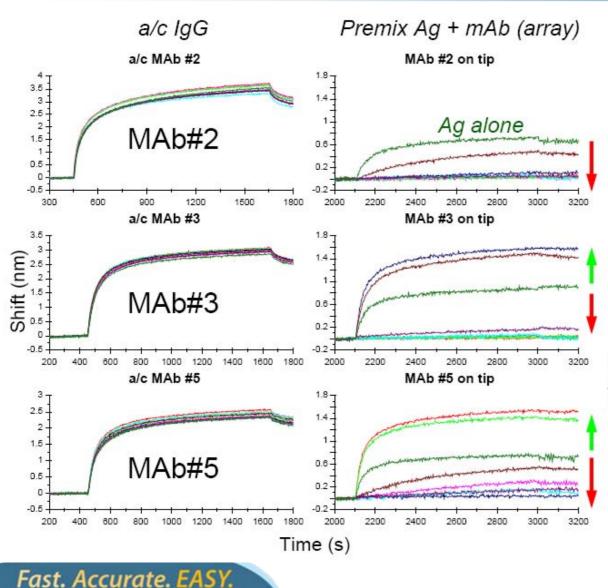
Table 1

Pairwise blocking results for the Octet data shown in Fig. 2

	Comment	him or one Alb			V			
Saturating mAb	Competing mAb							
	2	3	4	5	6			
1	Y	Y	Y	Ν	N			
2	Y	Y	Y	Y	Y			
3	Y	Y	Y	Ν	N			
4	Y	Y	Y	Y	Y			
5	Y	Ν	Y	Y	Y			
6	Y	Ν	Y	Y	Y			
7	Y	Y	Y	Y	Y			

Note. Y, blocks; N, does not block. Three patterns of blocking activity are discerned whether the table is read from left to right or from top to bottom: bin A = mAbs 1 and 3; bin B = mAbs 5 and 6; and bin C = mAbs 2, 4, and 7.

Fast. Accurate. EASY.



Analytical Biochemistry Vol. 377(2), 2008,

p209-217

Premix Approach

"Traffic light" binding matrix

Binding (sandwich) Unclear No binding (blocking)

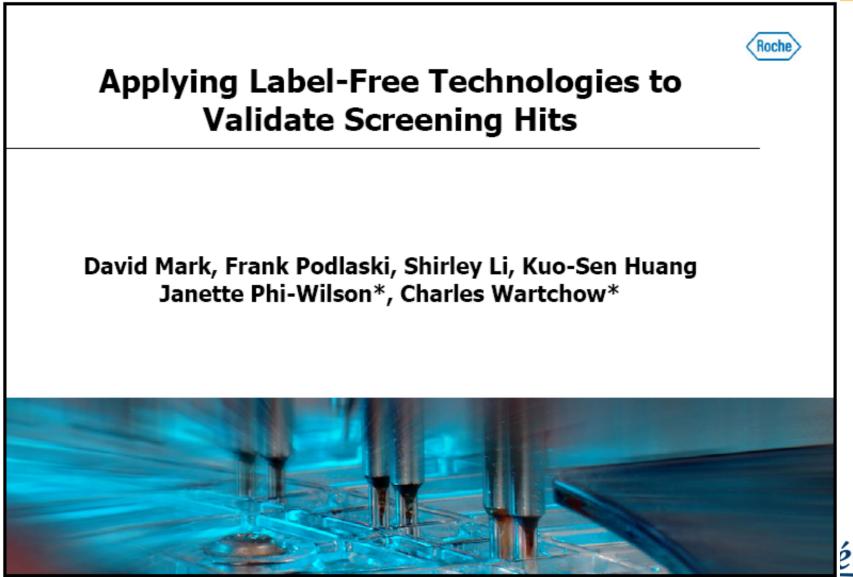
Confirmed 3 epitope bins using two blocking strategies BIN 1: #1 and 3 BIN 2: #5 and 6 BIN 3: #2, 4, and 7

SS= Self-Sandwich

Fast. Accurate. EASY.

Summary

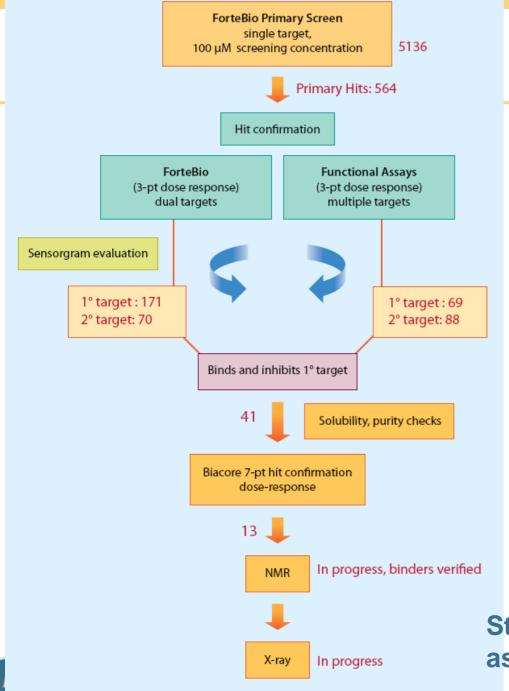
- 1. The Octet is a simple, low running costs make it accessible
- 2. "One-shot" kinetics provides an appealing assay format
- 3. Returns accurate kinetic rate constants for a wide range of interactions when compared head-to-head with Biacore
- The direct binding of small molecules is beyond the current detection limit
- Well-suited to blocking, especially in the context of epitope binning



Octet應用:合成化合物與天然藥物篩選

Case Studies 2: Fragment Screening Using the Octet RED System from Roche

rust. needrate. Enst.


Advantages of Label-free Technologies Binding of small molecules to proteins

- Detect direct binding of small molecules to protein
 Target
 - Distinguish between specific binding versus nonspecific binding to other reagent components
 - Determine stoichiometric binding versus aggregation
- Label-free

Fast. Accurate. EASY.

 Simplify reagent preparation and assay development

Fragment Screening Using the ForteBio Octet RED System

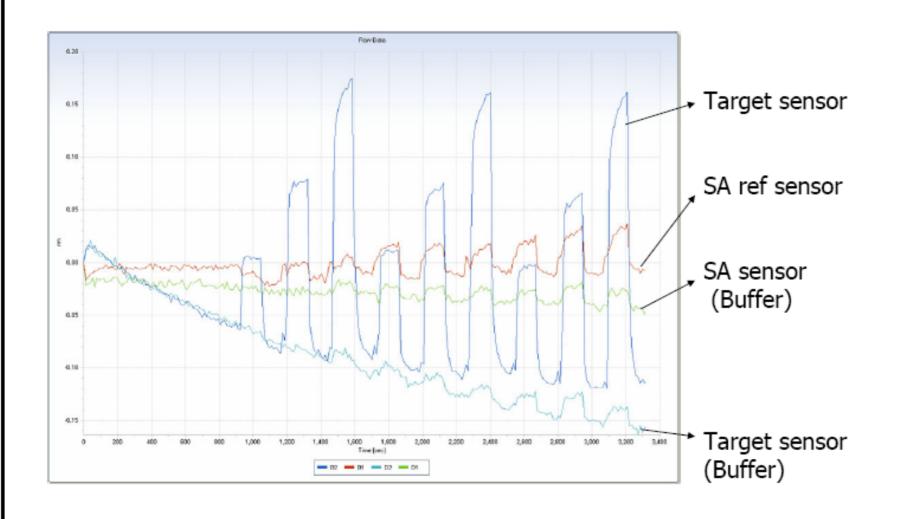
Strategy for fragment screening assay.

Optimization for Throughput

Roche

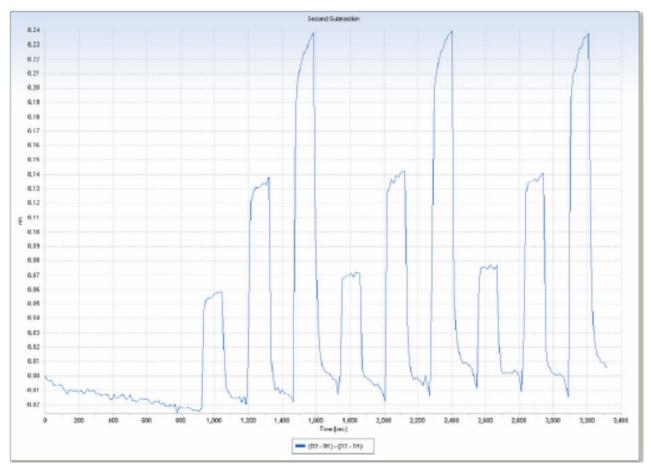
Reusing a sensor for multiple sample wells

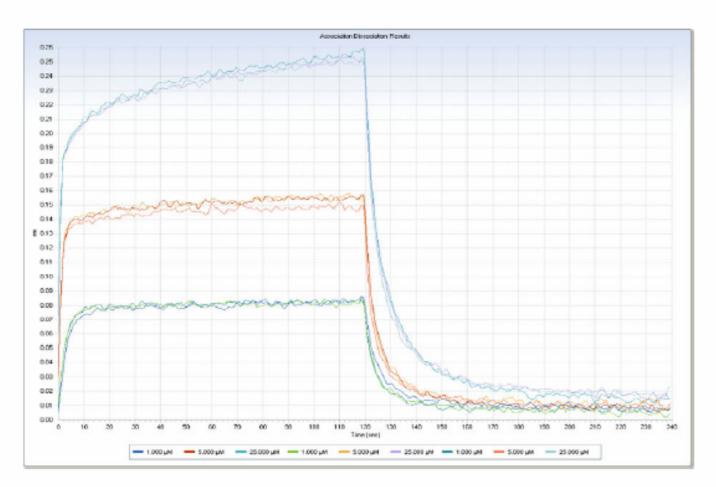
Experiment: (Test compound @ 3 concs, 3x in sequence)


- 1. Prepare target sensors offline
- 2. Use single dissociation well
- 3. Test for reproducibility and carryover

				Conc (uM)							
	1	2	3	4	5	6	7	8	9	10	11
А	baseline	dissoc	1.00	5.00	25.00	1.00	5.00	25.00	1.00	5.00	25.00
в	baseline	dissoc	4	4	4	5	5	5	6	6	6
с	baseline	dissoc	7	7	7	8	8	8	9	9	9
D	baseline	dissoc	10	10	10	11	11	11	12	12	12
Е	baseline	dissoc	13	13	13	14	14	14	15	15	15
F	baseline	dissoc	16	16	16	17	17	17	18	18	18
G	baseline	dissoc	19	19	19	20	20	20	21	21	21
н	baseline	dissoc	ref	ref	ref	ref	ref	ref	ref	ref	ref

Replicate Testing of Compound 2




Replicate Testing of Compound 2

1st and 2nd Substraction

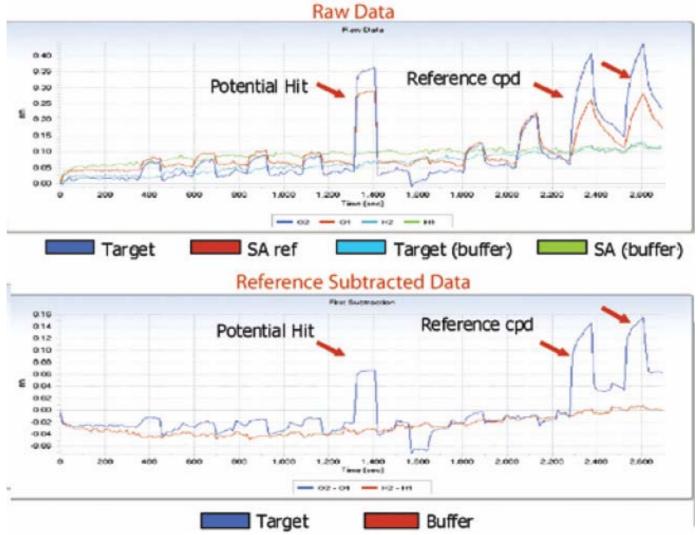
Overlay Replicate Response Curves

Single dissociation well for each row is sufficient

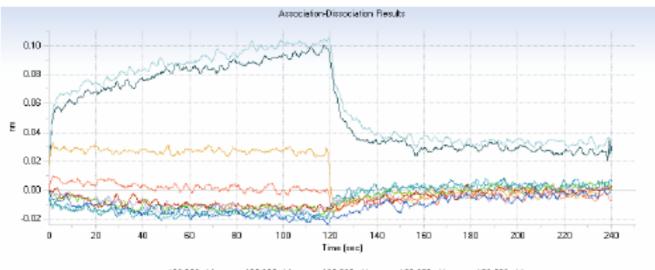
och

Fragment Screening Platemap 68 Cpds + 2 Controls

	Equil. Column	Dissociation column										
	1	2	3	4	5	6	7	8	9	10	11	12
A	Running Buffer	Running Buffer	Cpd1	Cpd2	Cpd3	Cpd4	Cpd5	Cpd6	Cpd7	Cpd8	Cpd9	Cpd10
в	Running Buffer	Running Buffer	Cpd11	Cpd12	Cpd13	Cpd14	Cpd15	Cpd16	Cpd17	Cpd18	Cpd19	Cpd20
с	Running Buffer	Running Buffer	Cpd21	Cpd22	Cpd23	Cpd24	Cpd25	Cpd26	Cpd27	Cpd28	Cpd29	Cpd3D
D	Running Buffer	Running Buffer	Cpd31	Cpd32	Cpd33	Cpd34	Cpd35	Cpd36	Cpd37	Cpd38	Cpd39	Cpd40
E	Running Buffer	Running Buffer	Cpd41	Cpd42	Cpd43	Cpd44	Cpd45	Cpd46	Cpd47	Cpd48	Cpd49	Cpd50
F	Running Buffer	Running Buffer	Cpd51	Cpd52	Cpd53	Cpd54	Cpd55	Cpd56	Cpd57	Cpd58	Cpd59	Cpd60
G	Running Buffer	Running Buffer	Cpd61	Cpd62	Cpd63	Cpd64	Cpd65	Cpd66	Cpd67	Cpd68	Std Cpd	Std Cpd
н	Running Buffer	Running Buffer	nning Bu	unning Buf	unning Buffe	Running Buffe	unning Buff	tunning Buff	unning Buff	unning Buff	Running Buffe	Running Buffer


column 1 = baseline for entire cpd row column 2 = dissoc for entire cpd row

- Throughput : 1.5 Hours per plate; 5 plates per day (340 compounds)
- Each compound screened at a single concentration (150 to 200 $\mu\text{M})$
- Hits confirmed based on concentration dependent response profiles


Fragment Screening Data

Fragment Screening Report Point Tool for Hit Selection

100.000 µW	🛑 100.000 μM	100.000 μM	💻 100.000 μM	Mi 100.000 💳
— 100.000 µМ	— 100.000 μM	— 100.000 μM	— 100.000 μM	

Sensor Location	Sample Location	Sample ID Concentrat	lon µM Time 1	(sec) Bind	ling 1 (nm shift) 🛛 Tin	ne 2 (sec) Bl	nding 2 (nm shift)
G2	G3	61	100	115	-0.019588784	235	-0.00152546
G2	G4	62	100	115	-0.010269617	235	-0.000587915
G2	G5	63	100	115	-0.016737366	235	0.005531213
G2	G6	64	100	115	-0.014430019	235	0.005592601
G2	G7	65	100	115	0.023833599	235	-0.001094302
G2	G8	66	100	115	-0.013589256	235	0.001518726
G2	G9	67	100	115	-0.017613245	235	0.0036475
G2	G10	68	100	115	-0.001286287	235	-0.003912368
G2	G11	69	10	115	0.100915789	235	0.030474652
G2	G12	70	10	115	0.092988986	235	0.026241437

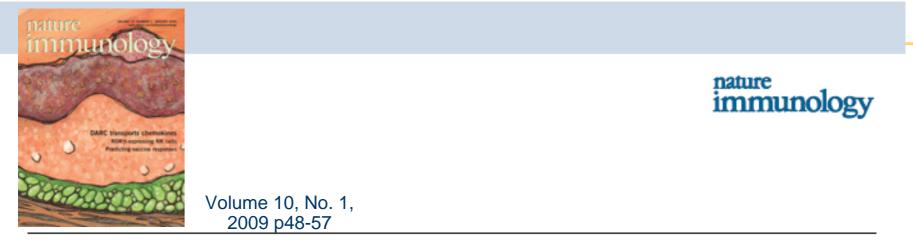
Summary of Octet Red in Hit Validation

Advantages

- ease of use; quick assay development
- low protein consumption (off-line protein loading)
- ability to identify aggregating & reactive compounds
- ability to assay complex or insoluble analytes

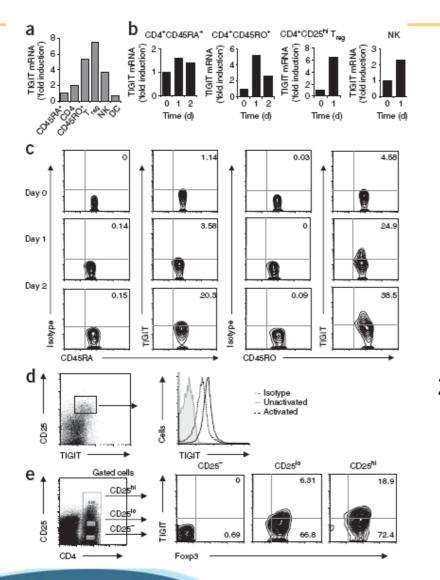
Octet Adoption: 18 of Top 20 Pharma/

Biotoch


Octet應用:免疫學與癌症生醫標誌研究

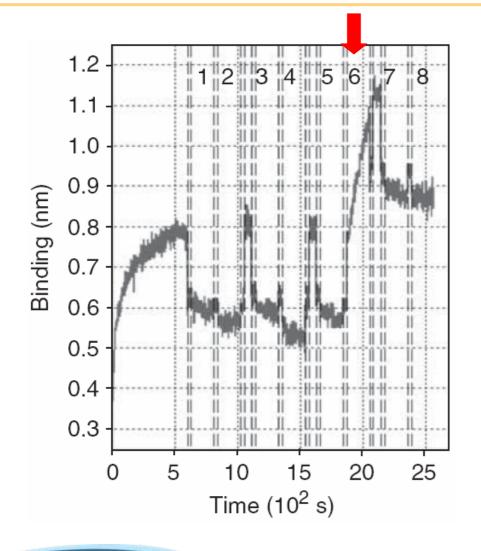
Rapid Protein Interaction Study

Fast. Accurate. EASY.


The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells

Xin Yu^{1,4}, Kristin Harden^{2,4}, Lino C Gonzalez², Michelle Francesco¹, Eugene Chiang¹, Bryan Irving¹, Irene Tom², Sinisa Ivelja¹, Canio J Refino¹, Hilary Clark³, Dan Eaton² & Jane L Grogan¹

Here we have identified a surface protein, TIGIT, containing an immunoglobulin variable domain, a transmembrane domain and an immunoreceptor tyrosine-based inhibitory motif that was expressed on regulatory, memory and activated T cells. Poliovirus receptor, which is expressed on dendritic cells, bound TIGIT with high affinity. A TIGIT-Fc fusion protein inhibited T cell activation *in vitro*, and this was dependent on the presence of dendritic cells. The binding of poliovirus receptor to TIGIT on human dendritic cells enhanced the production of interleukin 10 and diminished the production of interleukin 12p40. Knockdown of TIGIT with small interfering RNA in human memory T cells did not affect T cell responses. TIGIT-Fc inhibited delayed-type hypersensitivity reactions in wild-type but not interleukin 10–deficient mice. Our data suggest that TIGIT exerts immunosuppressive effects by binding to poliovirus receptor and modulating cytokine production by dendritic cells.


Identification of TIGIT Using Domain Structure Search Strategy

- Figure 1 Expression of TIGIT protein and mRNA in immune cells. (a) RT-PCR of the expression of TIGIT mRNA.
- 利用Genome-wide domain structure策略,掃瞄所有蛋白質轉 譯序列,找出含ITIMs相關的基因
- 由約1000種分泌型蛋白的In-hosue 資料庫中,利用Octet系統鑑定出與 TIGIT相作用的PVR (poliovirus recaptor)蛋白

In-house protein library functional screening: using ForteBio for Protein-binding assay

- Figure 2. (a) TIGIT binds to PVR family members.
 - Octet sensogram of the screening of TIGIT-Fc against one row of a single plate of the protein library including eight different proteins: endothelial cell adhesion molecule (1); otoraplin (2); TEK tyrosine kinase (3); TNF family member 10c (4); insulin-like growth factor-binding protein 4 (5); **PVR (6);** IL-19 (7); and a second lot of TEK tyrosine kinase (8) **forté**BIO

Cancer Biomarker Study: detection DNA in cancer

Editorial overview Detecting DNA: Getting and begetting cancer Adam M Farkas, Tina M Kilgore & Michael T Lotze*

Address

University of Pittsburgh Cancer Institute Departments of Surgery and Bioengineering Room G27 Hillman Cancer Center 5117 Centre Avenue Pittsburgh PA 15213 USA Email: lotzemt@upmc.edu

*To whom correspondence should be addressed

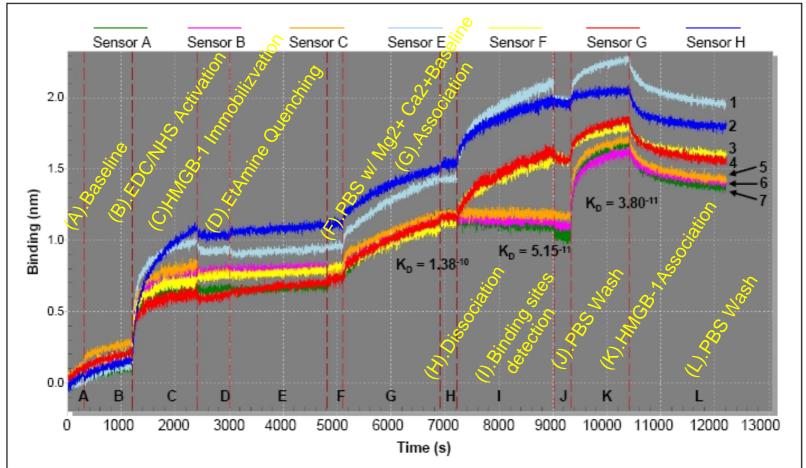
Fast. Accurate. EASY.

Current Opinion in Investigational Drugs 2007 8(12):981-986 © The Thomson Corporation ISSN 1472-4472

"Ignorance more frequently begets confidence than does knowledge: it is those who know little, and not those who know much, who so positively assert that this or that problem will never be collered by science."

Current Opinion in Investigational Drugs 2007 8(12):981-986

intracellular contents, and the consequences of such release for the induction of an inflammatory response (promoting tissue repair and wound healing in the tumor microenvironment) is important for an integrative understanding of cancer. Efforts to measure and assess such events are central to several novel clinical or experimental applications. In particular, for the diagnostic purposes of tracking progress in cancer therapy, and for considering and evaluating novel therapeutic strategies.


Tumor DNA is not just the target for genomic instability. It may also be defined as a damage-associated molecular pattern molecule (DAMP) [3], signaling the host for repair, and, begetting extracellular instability when found in those compartments.

Using Octet optical Biosensor for detection the Cancer-association DNA in Serum

Figure 1. Measuring DNA with interferometry.

Fast. Accurate. EASY.

Using Amine Reactive (AR) Biosensor for protein-DNA binding detection:

HMGB-1: nuclear protein high mobility group box-1 fortéBIO

Conclusion

- Optical detection may be used to effectively discern damage-associated DNAs by their binding to HMGB-1 or other macromolecules such as a transcription factor, histone, or an RNA or a DNA aptamer, or chemical agent that can bind DNA with high affinity.
- Detecting the disappearance of serum DNA therefore represents a suitable clinical assay for confirming tumor eradication, as well as allowing early detection in the event of recurrence.

Desirable Kinetic Platform Features

- Flexible Applications
 - Quick on/off rate screening
 - Ability to generate high quality kinetic profiles
 - Fast and easy method development
 - Analyze molecular interactions for size > 150 Da
- High Throughput
 - 96 well assays can be set up and left to run unattended
 - Run multiple samples and conditions simultaneously
- Easy to Use

- Assays set up is simple and flexible
- Any user can complete assays with minimal training
- No maintenance or instrument preparation required
- Disposable biosensors with optional regeneration

Thanks for your pay attention!!

