
KINOME**SCAN**

KINOMEscan— Robust Experimental Approach

for Best-in-class Kinase Inhibitors

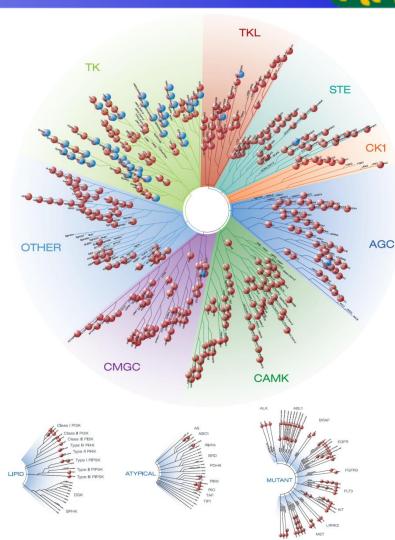
崔瑞廷, Tim 細胞影像分析工程師


DiscoveRx Technologies Platform

IM FOREST

Kinome

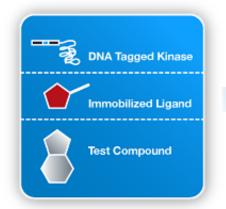
518 kinases have been identified divided into many groups

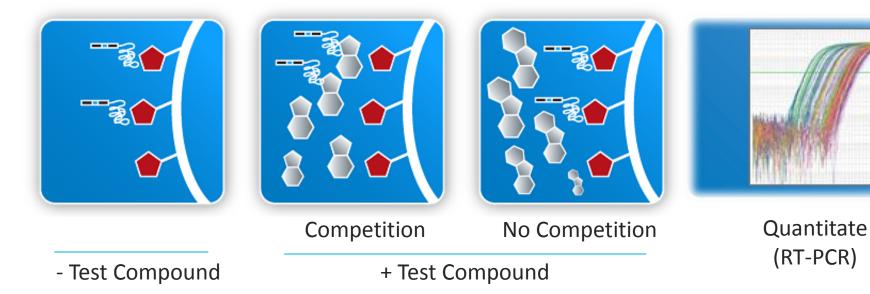

1.Serine Threonine Kinases
2.Tyrosine Kinase
3.Tyrosine Kinase-Like
4.CAMK (CALMADULIN dependent)
5.CMGC (Cyclin dependent)
6.AGC
7.CK1 (casein Kinase 1)
8.Atypical
9.Other

The Protein Kinase Complement of the Human Genome G. Manning, D. B. Whyte, R. Martinez, T. Hunter, S. Sudarsanam SCIENCE 2002 VOL 298

KINOME*scan*™ -World's Largest Kinase Panel

469 Kinase Assays (>90% Coverage)


- World's Largest Kinase Assay Panel
- 389 of the 518 distinct kinases
- 54 clinically relevant mutants
- 132 tyrosine kinase assays
- 20 lipid kinase assays
- >120 unique assays
- New Assays
 - SGK2 NEK10
 - NIK ALK(C1156Y) ALK(L1196M)
- Custom assay development



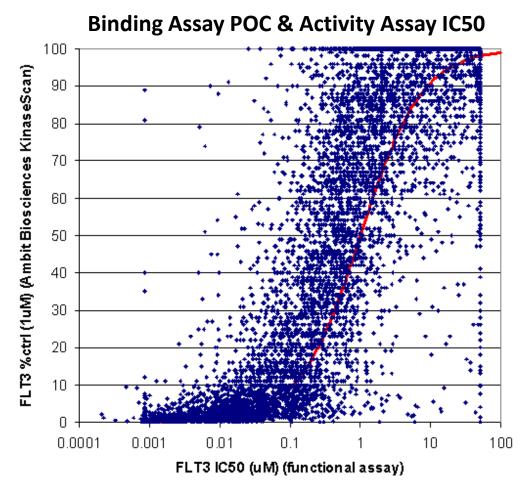
KINOME*scan* Technology: Active-Site Competition Binding Assays

Measure amount of kinase bound to immobilized ligand in the presence and absence of test compound

Features and Benefits of KINOMEscan Service

Features	Benefits
ATP-independent assay	Provides true binding constants & reduces variability
Measures thermodynamic K_d values as opposed to IC_{50} s	Enables inter-kinase inhibitor SAR analysis Robust interpretation of structural data
Unprecedented dynamic range (pM to mM)	Accurate potency rank ordering for high affinity inhibitors
No assay interference from fluorescent or colored compounds	Reliable screening of diversity decks and fragment libraries
Equally measure Type I and Type II inhibitors	Detect Type I and Type II inhibitors
Get structural insights from biochemistry	Structural classification of inhibitor binding mode without crystal structures Understand inhibitor binding kinetics

How Does Kinomescan (Binding assay) Compare to Conventional ATP Dependent Activity Based Assays?


Activity Assay Considerations

IC50 VS Kd Values

Feature	Binding Assay (Kd Values)	Activity Assay (IC50 Values)
Assays performed under the same conditions	Yes	No
Assay is independent of choice of substrate and ATP concentration	Yes	No
Detection of inactive and low activity kinases	Yes	No
Screening of activated and non-activated assay pairs; understand how phosphorylation state affects inhibitor affinity	Yes	No
Sensitivity & dynamic range	100 pM to > than 10 uM	No discrimination b/t cpds of different affinities below ~1 nM
Immune to assay interference from fluorescent or colored compounds	Yes	No

Relationship Between KINOMEscan

Bristol-Myers Squibb

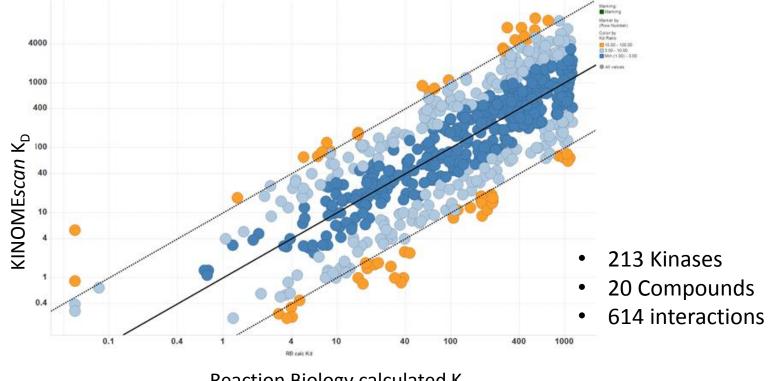
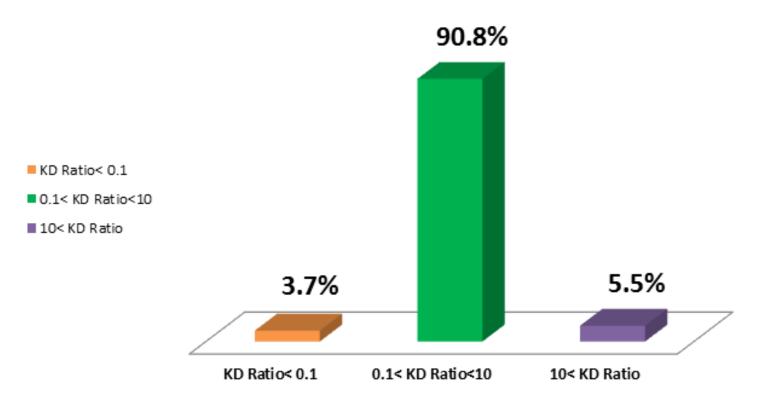

- BMS Project 30,000
 compounds against
 scanMAX panel (@ 1µM)
- POC and IC50 relationship for FLT3

Figure 1, J. Med. Chem. 2011, 54, 54–66

Consistency Between Binding Assay & Activity Assays


KINOME*scan* K_D vs Reaction Biology calculated K_D values

Reaction Biology calculated K_D

Consistency Between Binding & Activity

Binned KINOME*scan* K_D Values *vs.* Reaction Biology calculated K_D.

Reaction Biology (activity assay) Kds (calculated from percent of control in a 500nM compound screen) were compared to KINOME*scan* (competition assay) measured KD data for >600 common interactions across >200 kinases, and the KD ratios are binned and presented. KDs are within 10-fold between assay formats for >90% of the interactions.

Note: Only Reaction Biology data for PoC<70 and KINOME*scan* KDs <40uM were used.

Advantages of KINOMEscan Service

Highly Validated

- Highly impactful papers with over 200 citations
- 250+ customer publications using KINOMEscan

Quality

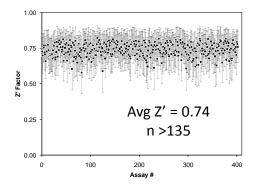
- Accurate, precise, reproducible
- Reference compounds and data

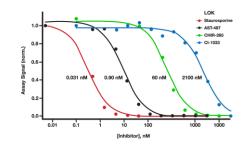
Quantity

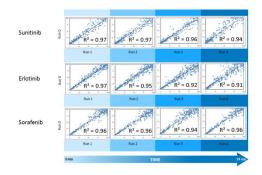
- Largest target menu (468 kinase assays)
- Continuous expansion of assay panel
- High throughput capabilities

Flexibility

GC


- Custom or pre-defined panels
- Custom assay development
- Flexible business models


Speed


- Rapid turnaround (< 10 business days)

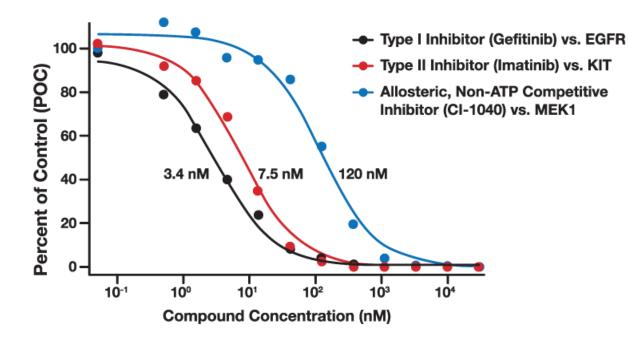
Expertise

- Direct access to drug discovery scientists

 Activated/non-activated assay pairs to elucidate compound binding mode

- Classify inhibitors as having:
 - "rapid" kinetics (equilibration in < 30 minutes)
 - "slow" kinetics (equilibration in > 30 minutes)
 - "irreversible" dissociation kinetics

SCAN MODE™


The Importance of Understanding Inhibitor Binding Kinetics

- Inhibitors with slow binding kinetics can give misleading results in vitro & in vivo
 - in vitro potency & selectivity
 - Cellular potency
 - Pharmacodynamics
- Slow association kinetics can suggest non-Type I binding mode
- Classify inhibitors as having:
 - "rapid" kinetics (equilibration in < 30 minutes)
 - "slow" kinetics (equilibration in > 30 minutes)
 - "irreversible" dissociation kinetics

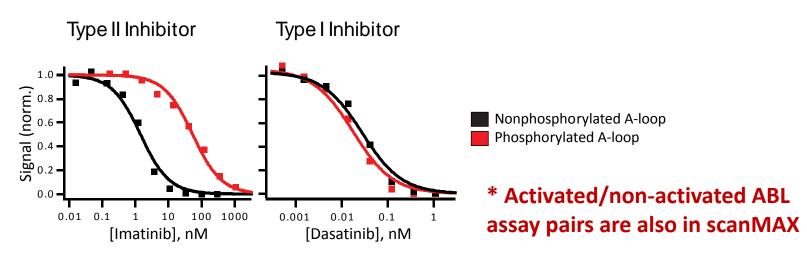
Detect Multiple Inhibitor Types

- ATP competitive
 - Type I & II inhibitors
- Non-ATP competitive
 - Bind allosteric pocket within the kinase domain, distal to ATP site
 - Competitive with binding of protein/peptide substrate with allosteric effect on active-site conformation

Differentiate Type 1 and Type II Kinase Inhibitors using scanMODE Assay Panel

Binding Mode / Activation State

- Type I Inhibitors
 - Bind primarily within ATP site
 - Generally insensitive to kinase conformation/activation state
 - Kinome-wide selectivity difficult to optimize
 - Rapid target association/dissociation kinetics
 - Examples: dasatinib, sunitinib, erlotinib


Type II Inhibitors

- Bind within ATP site and access a distal "allosteric" pocket
- Sensitive to kinase conformation/activation state: bind to "DFG-out" inactive enzyme conformation
- Generally more selective than type I inhibitors
- Slow target association/dissociation kinetics
- Examples: imatinib, sorafenib, 1AC220

Mechanism of Action scanMODE: Binding Classification

KIM FOREST

- Activated/non-activated ABL assay pairs*
 - + or phosphorylation of activation loop (A-loop)
- Key Observations
 - Type II inhibitor binding is activation state-dependent
 - Inhibitor binding mode is generally conserved across kinases
 - Many inhibitors have sufficient ABL affinity to qualify for scanMODE screens

scanMODE: Activation State-dependent **Inhibitor Binding**

Kinase Target		PLX-4032 AC016623		
KINOMEscan Gene Symbol	%Ctrl @ 100nM	%Ctrl @ 1000nM	%Ctrl @ 10000nM	
AAK1	86	89	86	
ABL1(E255K)-phosphorylated	75	72	69	
ABL1(F317I)-nonphosphorylated	70	80	26	
ABL1(F317I)-phosphorylated	100	100	100	
ABL1(F317L)-nonphosphorylated	100	100	41	
ABL1(F317L)-phosphorylated	100	100	85	
ABL1(H396P)-nonphosphorylated	59	49	7	
ABL1(H396P)-phosphorylated	100	100	75	
ABL1(M351T)-phosphorylated	100	100	68	
ABL1(Q252H)-nonphosphorylated	85	46	7.8	
ABL1(Q252H)-phosphorylated	100	100	76	
ABL1(T315I)-nonphosphorylated	96	100	90	
ABL1(T315I)-phosphorylated	100	100	100	
ABL1(Y253F)-phosphorylated	100	100	54	
ABL1-nonphosphorylated	100	76	10	
ABL1-phosphorylated	100	100	71	
CSF1R	77	61	5.4	
CSF1R-JMplus	100	100	100	
FLT3	64	14	1.6	
FLT3-JMplus	100	100	100	
KIT	49	8.7	0.1	
KIT-JMplus	100	62	26	

- scanMAX screens contain all of the assays that comprise our scanMODE offering
 - ABL1 phosphorylated and non-phosphorylated Type I vs Type II inhibitors
 - Autoinhibited/non-autoinhibited PDGFR family RTKs activation statedependent inhibition

Report and Sample Preparation

KINOMEscan Report

1. Percent Control (%Ctrl)

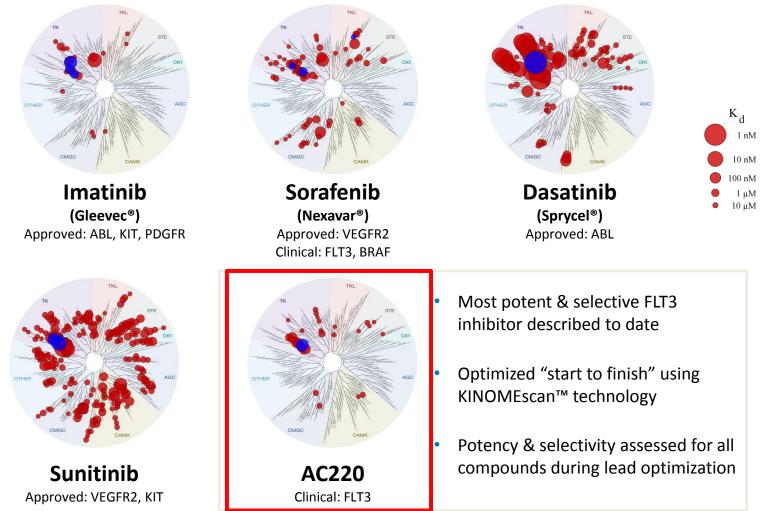
 $%Ctrl = \left[\frac{\text{test compound signal - positive control signal}}{\text{negative control signal - positive control signal}}\right] \times 100$

Kinase Target	Gleevec	GW-2016	SU-11248
KINOMEscan Gene Symbol	%Ctrl @ 10000nM	%Ctrl @ 10000nM	%Ctrl @ 10000nM
AAK1	34	75	0.85
ABL1	1.4	62	8.6
ABL1(E255K)	3.4	87	25
ABL1(H396P)	1.5	80	8
ABL1(M351T)	1.4	75	6.5
ABL1(Q252H)	1	84	12
ABL1(T315I)	34	79	0.1
ABL1(Y253F)	2.2	80	9.4
ABL2	0.4	77	20

KINOMEscan Report

2. Selectivity Score (S-scores)

S = Number of hits / Number of assays


S(35) = (number of non-mutant kinases with %Ctrl <35)/(number of non-mutant kinases tested)</p>
S(10) = (number of non-mutant kinases with %Ctrl <10)/(number of non-mutant kinases tested)</p>
S(1) = (number of non-mutant kinases with %Ctrl <1)/(number of non-mutant kinases tested)</p>

Compound Name	Selectivity Score Type	Number of Hits	Number of Non-Mutant Kinases	Screening Concentration (nM)	Selectivity Score
Gleevec	S(35)	41	290	10000	0.141
Gleevec	S(10)	19	290	10000	0.066
Gleevec	S(1)	7	290	10000	0.024
GW-2016	S(35)	6	290	10000	0.021
GW-2016	S(10)	3	290	10000	0.01
GW-2016	S(1)	2	290	10000	0.007
SU-11248	S(35)	182	290	10000	0.628
SU-11248	S(10)	140	290	10000	0.483
SU-11248	S(1)	82	290	10000	0.283

KINOMEscan Report

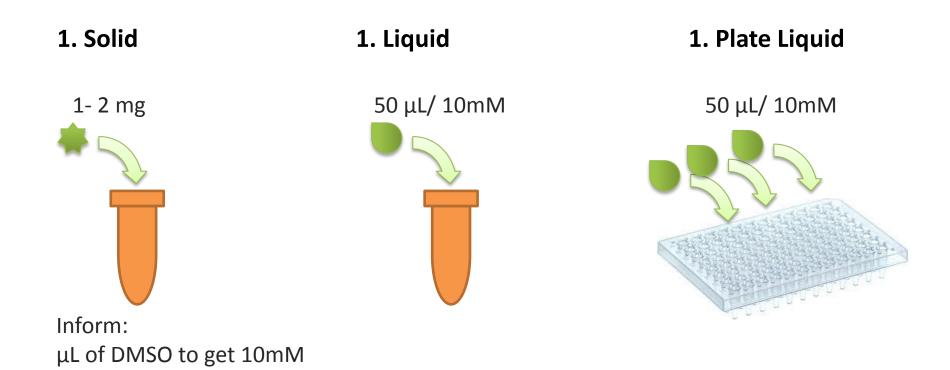
3. TREEspot[™] Interaction Maps

SCANMAXTM Panel screen of world's largest kinase collection

- **SCAN** EDGE[™] Panel screen of 97 selected kinases
- **SCAN** ELECT[™] Choose your kinases or build custom panels
 - $k_d \text{ELECT}^{\text{T}}$ Quantitative binding constants for any kinase
- **SCAN**MODE[™] Elucidate compound binding mode
- **SCANKINETIC** Characterize compound binding kinetics

Complete Service Request Form (SRF)

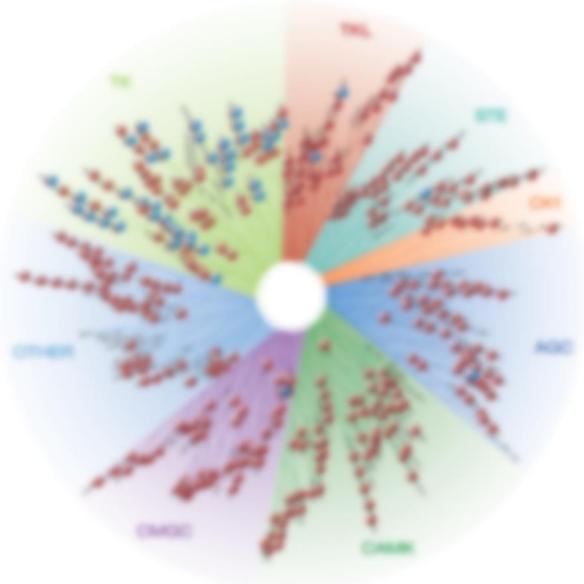
1. For Solids Complete:


 \succ µL of DMSO to add to make a 1000X stock solution: Enter microliters (µL) of DMSO required to make a 1000X stock solution for each Compound

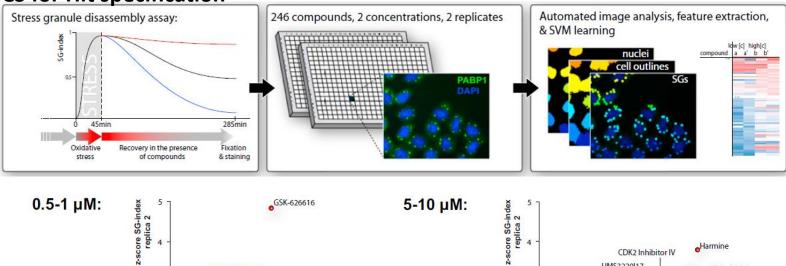
- Compound Weight: Enter Weight in milligrams (mgs) for each Compound (optional)
- 2. For Liquids Complete:

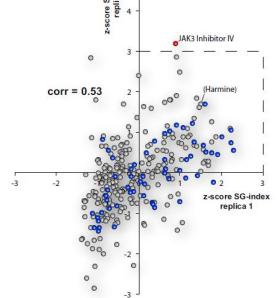
Stock Concentration: For Liquids enter Stock Concentration (mM) for each Compound

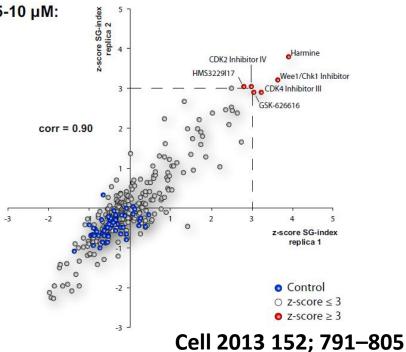
- Stock Volume: For Liquids enter Stock Volume (μL) for each Compound
- **3.** For Plated Liquids Complete:
 - Well Location: Enter Well Location of each Compound
 - Plate ID #: Enter Plate ID Number for each compound


Complete Service Request Form (SRF)

10 business day to turn around data after received compound

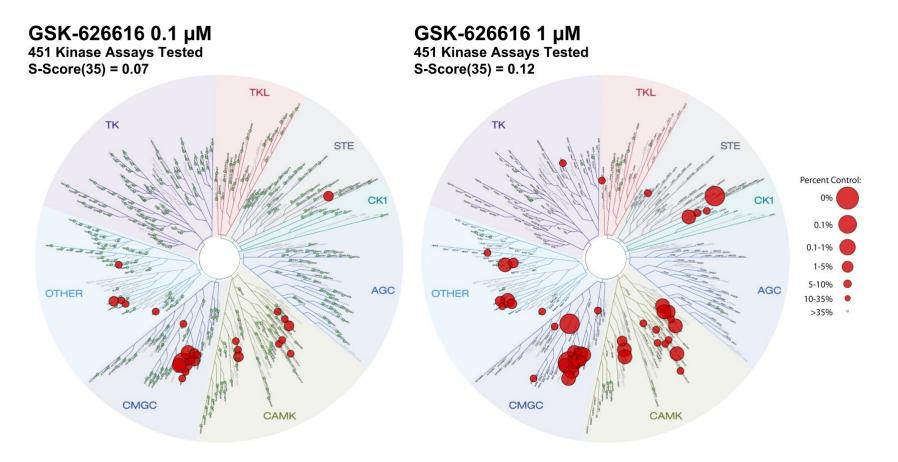

Case Study




Drug Screening assay

KIM FOREST

HCS for Hit specification



28

Drug Screening assay

KINOMEscan for target specification

Publications

IM FOREST

Nature Biotechnology RESOUR	RCE	Nature Reviews Drug Discovery PERSPECTIVES
A quantitative analysis of kinase inhibitor selectivity Inhibition of drug-resistant mutants of ABL, I and EGF receptor kinases	PNAS	7898 J. Med. Chem. 2008, 51, 7898–7914 Assessment of Chemical Coverage of Kinome Space and Its Implications for Kinase Drug Discoverv Journal of Medicinal Chemistry Molecular Discovery Research, GlavoSmithKline, Gunnets Wood Road, Stevenage, Hertfordshire, SCI 2NY, U.K., Five Moor Drive, Research Triangle Park, North Carolina 27709, U.S.A., and New Frontiers Science Park, Harlow, Essex CM19 5AW, U.K. Received September 4, 2008
Todd A. Zdravko Robert M Charles L "Ambit, Inc Medical Ins Tumors to Anaplastic Lymphoma Kinase Inhibitors	hem. XXXX, XXX, 000-000 A DOI: 10.1021/jm101195a	Activation State-Dependent Binding of Small Molecule Kinase Inhibitors: Structural Insights from Biochemistry
Extending kinome coverage by analysis of kinase inhibitor broad profiling data		First Selective Small Molecule Inhibitor of FGFR4 for the Treatment of Hepatocellular Carcinomas with an Activated FGFR4
Logar Jscoby, escobyth Jiccon, Gay Tresdern , Sort Bendener, Bernold Woblowski, Jereny Hunt ² and Herman van Vijmen ^{1,4} , hvvijme@Hsjrj.com	kinase inhibit Miles A Fabian ^{1,3} , William	ARTICLES ecule—kinase interaction map for clinical tors n H Biggs III ^{1,3} , Daniel K Treiber ^{1,3} , Corey E Atteridge ¹ , Mihai D Azimioara ^{1,2} , odd A Carter ¹ , Pietro Cicer ¹ , Philip T Edeen ¹ , Mark Floyd ¹ , Julia M Ford ¹ ,

Nature Biotechnology Volume 29 number 3 march 2012

Partner Publications

BMS

- 30,000 compound screen
- "...results support a scaffold-oriented approach for building compound collections to screen kinase targets."
- "...a reasonable relationship between single-concentration binding data and IC50 values from functional assays..."

Janssen

- 3,300 compound screen
- Starting points for 6 disease area projects
- Confirmed previously identified HTS hits for 3 projects

Ambit

- Exclusively supported by KINOMEscan (Technology validation)
- AC220 (Quirzartinib) in phase 3 clinical trials
- Acquisition in 2014 by Daiichi Sankyo

Blueprint Medicines

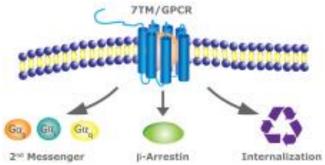
 "...a novel irreversible kinase inhibitor that specifically targets FGFR4 while sparing all other FGFR paralogs and demonstrates exquisite kinome selectivity..."

Keyword: BMS pub

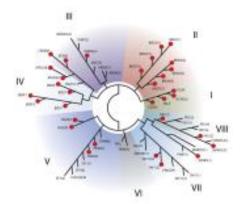
Keyword: Janssen pub

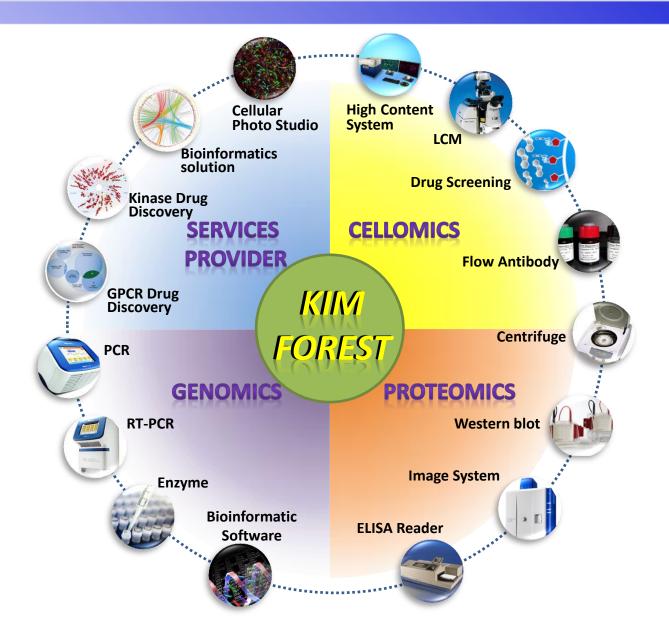
Keyword: KINOMEscan pub

Keyword: blueprint pub



Total solution to in vitro drug development





BROMOscan

Our Company- Kim Forest

Thanks for your attention!

Contact

Tim 崔瑞廷

Email: tim@kimforest.com

Tel: 02-27902222

