ImageStream^X Cytometry: 影像化流式細胞儀-高速細胞影像定量之應用

Eric Chen Cold Spring Biotech Corporation

冷泉港生物科技股份有限公司

Amnis ImageStream[®] System

- ImageStream^X Imaging Flow Cytometer Brightfield, darkfield, and several fluorescent images at high speed
- IDEAS[®] Statistical Image Analysis Software

Quantitative cellular image analysis and population statistics

Novel Applications

Translocation, co-localization, cell classification, cell cycle, apoptosis, etc.

ImageStream^x combines FACS and Microscopy

Flow Cytometry – Well-established, powerful technology

- provides quantitative data
- for multiple probes
- on a per cell basis
- for a large numbers of events/sample
- look at rare events
- determine subtle differences in populations

Lacks morphology – no ability to:

- determine spatial distribution of signal
- determine morphological changes
- determine co-localizing events
- investigate trafficking, polarization, etc.

Fluorescence Microscopy – Well-established, powerful technology

- extremely high resolution images
- on a per cell basis
- for multiple probes
- on a per cell basis
- very high content information

Microscopy limited by two problems:

difficult to get statistically large sampling size per sample
 images are laborious and time consuming to take

• difficult to quantify images in an objective manner

- despite the fact that there is a tremendous amount of information present in each image

Incomplete NF-κB translocation in LPS-stimulated monocytes

Quantitative Image Analysis

Example: NF-kB translocation assay in monocytes

Conclusion:

Robust image-based assays can require the analysis of thousands of cells.

www.amnis.com

Using Images to Multiplex Experiments

Example:

Incomplete NF-κB translocation in LPS-stimulated monocytes

Conclusion:

Simultaneous measurement of translocation and DNA content can lead to better understanding...

www.amnis.com

LPS-induced nuclear translocation

 Change between untreated/treated cells measured using Rd analysis (y-axis) for the indicated number of randomly sampled cells (x-axis)

Rd = statistical separation between positive and negative controls

LPS-induced nuclear translocation

 Change between untreated/treated cells measured using Rd analysis (y-axis) for the indicated number of randomly sampled cells (x-axis)

LPS-induced nuclear translocation

- Change between untreated/treated cells measured using Rd analysis (y-axis) for the indicated number of randomly sampled cells (x-axis)
- Therefore collect at least 100 and ideally at least 1000 target events per sample

LPS-induced nuclear translocation

- Change between untreated/treated cells measured using Rd analysis (y-axis) for the indicated number of randomly sampled cells (x-axis)
- Therefore collect at least 100 and ideally at least 1000 target events per sample

ImageStream Layout

Pathway to quantitative image analysis

- Numerical measurement of morphology associated with an image; performed on many images per sample
- To achieve this:

www.amnis.com

Time Delay Integration

	Z_PRE	SEN~1_Graphics_AN	IMAT~1_TD5D1D~1[1].MOV	
<u>Ele E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u> elp					
	•				

TDI CCD

•Excite fluorescence over the entire height of the detector

•Light is detected in the first pixel row and transferred to the pixel below in exact synchrony with the velocity of the cell as it goes streaming by.

•Light is integrated over the entire height of the detector to achieve high photonic sensitivity

•Images don't streak or blur and maintain 0.5um per pixel resolution.

Digital Imaging in Flowcytometer

One dot represents one cell image

www.amnis.com

ImageStreamX

- 1,000 cells per second
- 12 image channels per cell: darkfield, brightfield, fluorescent
- Up to 5 lasers (488, 405, 561, 592, 658 nm)
- 430-800 nm imaging bandwidth
- Multiple magnifications (60X/.9NA, 40X/.75NA, 20X/.5NA)
- AutoSampler for 96 well plates
- Extended depth of field optics (EDF)

IDEAS[®] Analysis Software

 High content morphometric analysis of tens of thousands of images

•Application wizards for validated protocols

• "Building block" analysis quickly finds the features you need

• 85 parameters per channel, 14 masks, and user defined features for advanced image-based discrimination of cells

😂 IDEAS 4.0

🛛 🤟 Guided Analysis 🛛 Analysis Compensation Tools Options Reports Windows Help

Welcome to IDEAS[®]...

Version 4.0.249.0

To begin using IDEAS, select an application below or choose the "Open File" option to perform manual analysis or view previously processed data.

\$	Open File	Open ImageStream data files
	Apoptosis	Identify apoptotic events based on brightfield and nuclear morphology
	Cell Cycle - Mitosis	Distinguish mitotic and apoptotic events
	Co-localization	Measure the co-localization of two probes on, in, or between cells
C	Internalization	Measure the internalization of a probe
۲	Nuclear Localization	Measure the nuclear localization of a probe
	Shape Change	Measure circular morphology

IDEAS[®] Software

Image Gallery

- 🗆 🗵

×

see every cell flexible viewing enhance & color tag populations virtual cell sort

Tabular Data

100's of params/cell population statistics object values

Workspace

uni + bivariates flexible gating click dot to view cell custom parameters

Features 85 per channel, up to 12 channels

Size features are in microns:

Area; Diameter; Major Axis; Minor Axis; Major Axis Intensity; Minor Axis Intensity; Perimeter; Thickness Max and Min; Spot Area Min; Width; Height; Length

Shape features define the mask shape, units vary with the feature:

Aspect Ratio; Aspect Ratio Intensity; Circularity; Compactness; Elongatedness; Lobe Count; Shape Ratio; Symmetry 2,3,4

Location features are in X,Y pixel coordinates:

Angle; Angle Intensity; Centroid X; Centroid Y; Centroid X Intensity; Centroid Y Intensity; Delta Centroid X; Delta Centroid XY; Max Contour position; Spot Distance Min;

Texture features determine local intensity variations in images:

Bright Detail Intensity R3; Bright Detail Intensity R7; Contrast; Gradient Max; Gradient RMS; Modulation; Spot Count; Std Dev; and the Haralick (H) texture features H-Contrast; H-Correlation; H-Energy; H-Entropy; H-Homogeneity; and H-Variance

Signal Strength features are measured in counts:

Bkgd Mean; Bkgd StdDev; Intensity; Raw Intensity; Raw Max Pixel; Raw Min Pixel; Raw Mean Pixel; Raw Median Pixel; Max Pixel; Min Pixel; Mean Pixel; Median Pixel; Saturation Count; Saturation Percent; Spot Intensity Min

Comparison features quantify intensity differences between masks or pixels:

Intensity Concentration Ratio; Internalization; Similarity; Bright Detail Similarity R3

System features do not require a mask:

Camera Line Number; Camera Timer; Flow Speed; Object Number; Objects per second; Objects per ml and Time

Combined features are created by using Boolean Logic

\approx	Feature Manager								
	Features:								
	🗄 Location								
	🗄 Shape								
	Texture								
	Comparison								
	ter System								
	A 💊 🖱 🗷 🖽								
	\$ \$ \$ \$ \$								
	etic Na 390								
	ab.								

ImageStream applications

Cell death & autophagy

Internalization & phagocytosis

Shape change & chemotaxis

Surface and intracellular co-localization

Stem cell biology

DNA damage and repair

Parasitology

Microbiology

Cell-cell interaction

Cell cycle & mitosis

Oceanography

Cell Cycle / Mitosis / Apoptosis

Interphase Prophase Metaphase Anaphase Telophase Atypical Apoptotic

HL60 cells were labeled with anti-HLA AF488 and DRAQ5
DNA condensation pattern and Brightfield contrast help distinguish the phases of mitosis from apoptotic and interphase nuclei

NF-kB translocation in whole blood subsets

NF-kB translocation in whole blood subsets

Eosinophils

Neutrophils

	9_BF	6_SSC	7_DAPI	2_FITC NFkB	3_PE CD14	4_PETR CD45	11_AF647 CD16	12_A750 CD3
9095			48	٩				
9112	(H)			۲				
9135		19		0				
9295	®	·						

NF-kB translocation in whole blood subsets

Monocytes

T cells

	9_BF	6_SSC	7_DAPI	2_FITC NFkB	3_PE CD14	4_PETR CD45	11_AF647 CD16	12_A750 CD3
325	S			۲		۲		()
718	۲					۲		۲
969	929 929			6		۲		
1246	(F)			1		۲		

LPS induces specific NF-kB translocation in monocytes

Mono, PMN, T cell

9_BF	6_SSC	2_FITC NFkB/7_DAPI	3_PE CD14	4_PETR CD45	11_AF647 CD16	12_A750 CD3
316	11.1		١			
943			0			
1142	Sec.		0			
3592	1	۰	0			

amnis

Internalization and Trafficking of Human Transferrin with confocal microscopy...

 In a well characterized system, the transferrin (TFn) receptor is distributed on the cell surface (A).

• At 60min TFn localizes to the endosome (B) but not the lysosome (C).

• This is a model system for internalization and intracellular trafficking of novel ADCs and can be quantified. How effective was the endosomal colocalization?

amnis

How effective was the endosomal colocalization in the top panel? 3 cells in 8 is only 38%

Chongwei Cui Dr. Pat Fitzgerald-Bocarsly UMDNJ

CD71 (endosomes)

Cy5-CpGB: organelle trafficking

MCP-1

Circularity = average radius divided by radial variance

•Radius is the distance from the center of the cell to the edge, at a given angle.

•Radial variance is the average squared deviation from the radial mean, and is a measure of a non-uniform radius.

MCP-1 causes a 'loss in circularity' in the majority of the monocytes

ImageStream applications

Cell death & autophagy

DNA damage and repair

Stem cell biology

Shape change & chemotaxis

Cell cycle & mitosis

Oceanography

- 📀

Microbiology

Parasitology

Multiple Excitation Lasers

405nm 100mw Laser (DAPI, Hoechst, Pacific Blue...)

488nm 100/500mw Laser (FITC, PE, PI, ECD, PerCP...)

560nm 200mw Laser (PE, Spectrum Orange...)

592nm 300mw Laser (Texas Red, AF594, DS Red...)

658nm 120mw Laser (AF647, Cy5, APC, APCCy7...)

More lasers for greater flexibility in choosing fluorochrome, and collecting More channels of data...

12 Channel 2 Camera System

•12 channel data, two brightfield, SSC and up to 10 colors of fluorescence.

amnis

Camera '	1, ex.488	, 560, 78	5			Camera 2	2, ex 405	, 592, 658			
Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7	Channel 8	Channel 9	Channel 10	Channel11	Channel 12
430-480	480-560	560-595	595-660	660-745	745-800	430-505	505-575	575-595	595-660	660-745	745-800
Brightfield	FITC	PE	ECD	PerCP	SSC	DAPI	PacOrng	Brightfield	TxR	AF647	APC Cy7
	AF488	Cy-3	PE-TxR	Draq5	PE-Cy7	PacBlu	AF430		AF594	AF660	APC AF750
	GFP	AF555	PI	PerCp5	PE-750	MarBlu			AF568	Cy5	
	YFP	DS-Red	7AAD	PE-647	SSC	Hoechest			AF610	APC	
	Syto		PE-610	PE-Cy5						APC-Cy5.5	
	SpecGrn			PE-680							$\langle \rangle$

Multiple Magnifications

40x objective
 60um field of view
 0.5um per pixel
 4um eff depth of field
 0.75 NA

20x objective

 120um field of view
 1um per pixel
 8um eff depth of field
 0.5NA

60x objective

40um field of view 0.33um per pixel 2.5um eff depth of field 0.9NA

AutoSampler for Unattended Operation

•96 well plate format

•Software to facilitate multiple experiments per plate

•Failure warning and sample recovery

•Robotics compatible

•Auto-mixing with the uptake probe.

•Membrane piercing probe.

Extended Depth of Field (EDF) – Spot count analysis

Tox assay - Lung carcinoma cells probed for γ -H2AX (FITC) expression

Standard Imaging

- Some spots in focus
- Defocused spots contribute to high background
- Reduced Spot count values

Brightfield

EDF Imaging

- All spots in focus
- Background reduced

Validated with Scientific Publications

- Peer reviewed scientific publications are essential for broad adoption
- >125 Scientific publications from customer base
- Publications are high profile and demonstrate unique capabilities

amr

ImageStream Sites

TAS

RIKEN

UNIVERSITY OF

OXFORD

Summary

The ImageStreamX delivers:

- Localization of biomarkers on, in, or between cells
- Cell classification with quantitative morphology
- Characterization of rare sub-populations in complex samples
- Image-based applications with flow cytometry protocols

Clarity from Complexity

• Thank you for your attention!!

