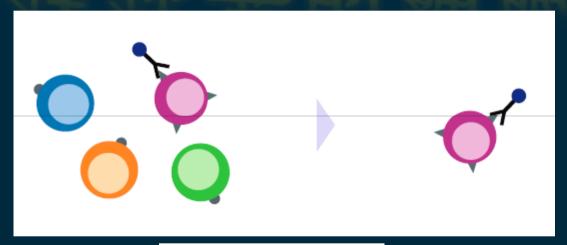
J& H Technology ~Always for you~

服務專線 0800-898-178 www.jnhtech.com.tw

MACS Technology autoMACS Pro™ Cell Separator

J&H 博克科技有限公司 產品應用專員 曾筱筑

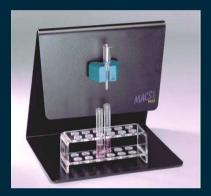

Application Specialist Sarah Tseng $_{J\ \&\ H}$ J $_{\&\ H}$ Technology \cdot Always for you

Contents

- 1. MACS Technology
- 2. Procedure of Magnetic Cell Separation
- 3. autoMACS Pro Introduction

MACS™-Magnetic Activated Cell Sorting

抓住你要的細胞!!



- Fundation in 1989
- The gold standard for cell separation.
- More than 12,000 publication in 20 years

Germany

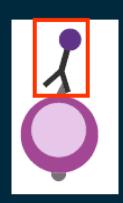
MACS™ Separation systems

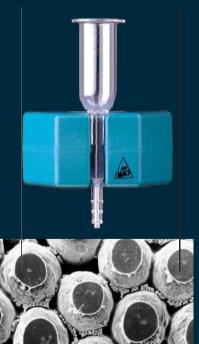
MiniMACS[™] Separator

For separation of 1x10⁷ labeled cells

MidiMACS[™] Separator

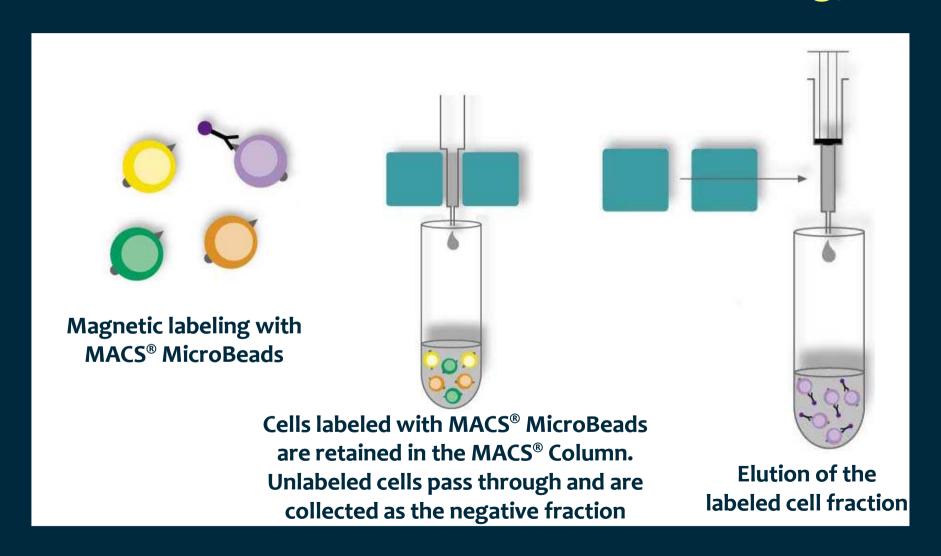
For separation of 1x10⁸ labeled cells

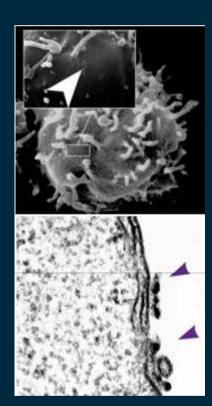

autoMACS[™] Pro Separator


- -- Walk-away cell sorting of multiple samples
- -- >10⁷ cells/ sec
- -- Reusable Column
- -- Stem cell separation from whole blood

MACS™-Magnetic Activated Cell Sorting

MicroBeads


Columns


Separators

Based on renowned MACS™ Technology

Questions about microbead...

- Does microbead activate my target cell?
 - → Small beads: 50 nm
 - → Iron Oxide and Polysaccharide
- Is it necessary to remove the microbeads?
 - → Non-toxic and biodegradable
- Does it affect the fluorescent antibody binding?
 - → Only 20-30% of binding sites were occupied
- Highly specific -- Ideal for selection of rare cells
- Colloidal suspension prevent precipatation and aggregation

Features and Benefits of MACS

- Fast and easy
- Highly pure cells(>95%)
- Highly recoveries from normal donors (>90%)
- Reproducibility
- Cell function preserved

Contents

- 1. MACS Technology
- 2. Procedure of Magnetic Cell Separation
- 3. autoMACS Pro Introduction & Software overview

Procedures of MACS cell separation

Sample preparation – Obtain single cell suspension

Labeling with MACS microbeads

Cell separation

Sample preparation

From Peripheral Blood
 Density-gradient Centrifugation
 RBC lysis

From tissue and organs

gentleMACS™Dissociator

The safe, gentle and easy way of automated tissue dissociation

For obtaining...

Single cells from

- > mouse spleen, neural tissue
- > mouse heart, lung, liver
- > Tumor tissue
- > Any other tissue sample Total RNA/mRNA from tissues

Procedures of MACS cell separation

Sample preparation – Obtain single cell suspension

Labeling with MACS microbeads

Cell separation

30μm pre-separation filter

Labeling with MACS microbeads General Way...

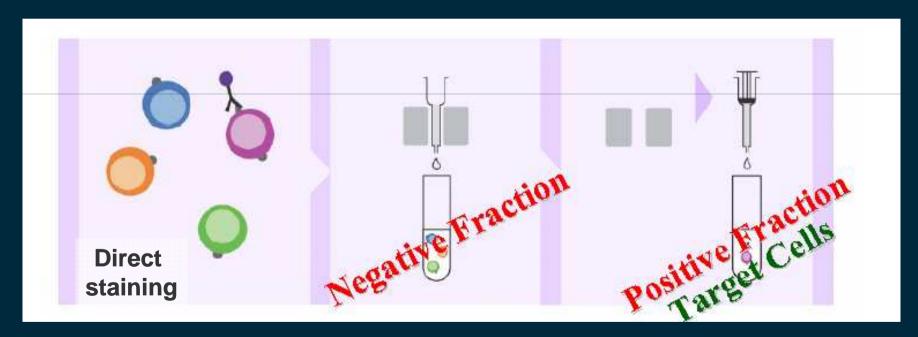
What kind of cell you want?

"I want mouse T cells"

Specific Markers?
"They expresses CD3"

Does Miltenyi Biotec provide specific Microbead? "yes! They provide mouse CD3 microbead!"

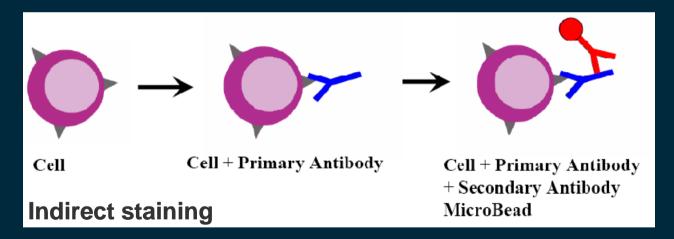
Stain with the specific Microbead...


(Usually 4-8 $^{\circ}$ C, 15mins)

Labeling with MACS microbeads

General Way...

Positive Selection



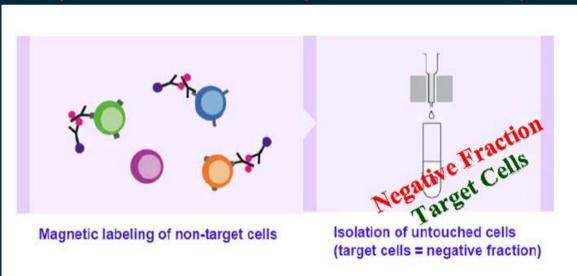
More than 200 direct microbead reagents

Labeling with MACS microbeads What if...

"There is no direct microbeads for my specific marker?"

Indirect Microbeads Labeling!!

Indirect Microbeads:


- ✓ anti-Immunoglobulin microbeads (IgG \ IgM...)
- √ anti-Fluorochrome microbeads (FITC 、 PE 、 APC...)
- ✓ Streptavidin/anti-biotin microbeads

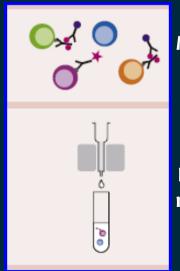
Labeling with MACS microbeads What if...

"I want to deplete specific cell population."

"I don't want my cells to be bound with any antibodies!!"

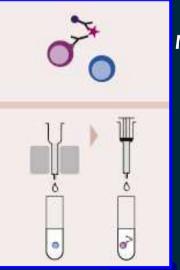
Depletion / Untouched separation (Label cells which you don't want!)

CD3 MicroBeads, human (positive selection) V.S Pan T cell isolation kit (Depletion)


Labeling with MACS microbeads What if...

"I want to sort cells with more than one marker?"

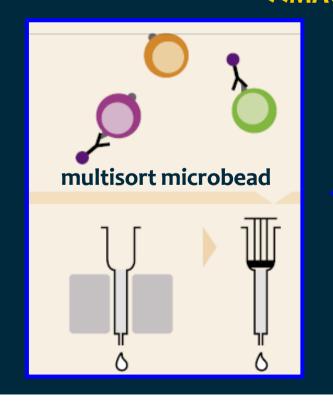
1. Depletion → Positive selection

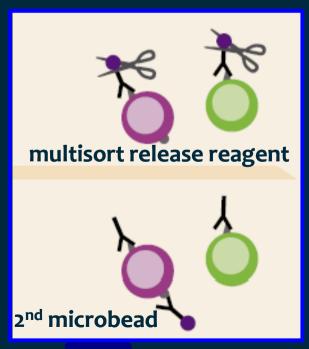

For example:

Sorting CD4+CD25+ cells from PBMC<Regulatory T cell isolation kit>

Magnetic labeling of non-CD4 cells

Depletion of non-CD4 cells

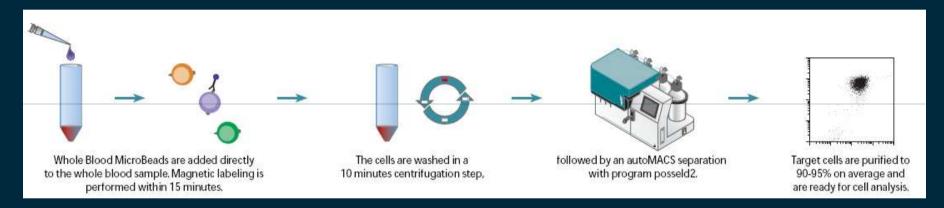

Magnetic labeling of CD25+ cells


Positive selection of CD25+ cells

Labeling with MACS microbeads What if...

"I want to sort cells with more than one markers?"

2. Multisort Separation <<MACS Multisort kits>>



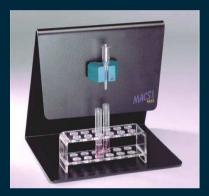
Labeling with MACS microbeads

Cell sorting from whole blood (0.25 mL-3 mL)

<<MACS Whole blood microbeads>>

MACS® Whole Blood products

Whole Blood CD3 MicroBeads
Whole Blood CD4 MicroBeads
Whole Blood CD8 MicroBeads
Whole Blood CD14 MicroBeads


Whole Blood CD15 MicroBeads Whole Blood CD19 MicroBeads Whole Blood CD45 MicroBeads Whole Blood CD56 MicroBeads

Contents

- 1. MACS Technology
- 2. Procedure of Magnetic Cell Separation
- 3. autoMACS Pro Introduction

MACS™ Separation systems

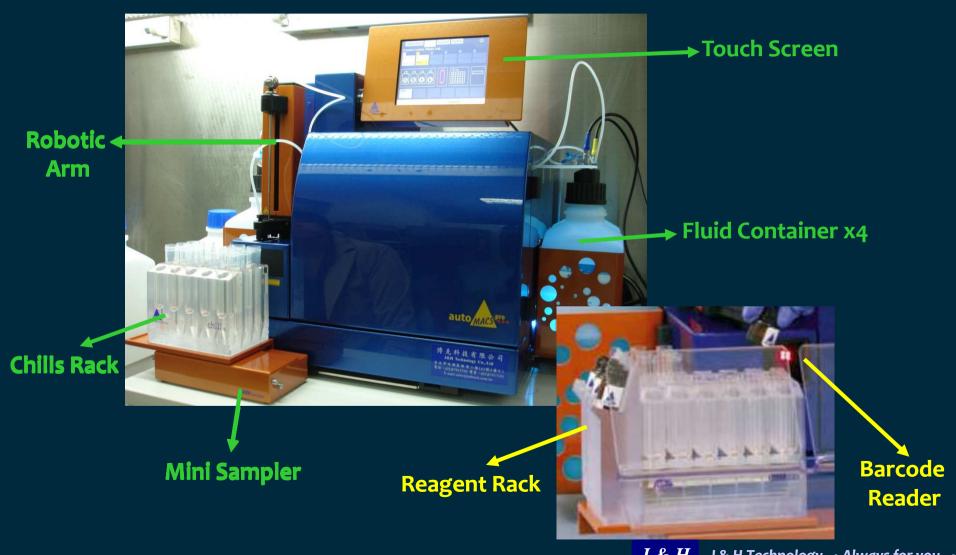
MiniMACS[™] Separator

For separation of 1x10⁷ labeled cells

MidiMACS[™] Separator

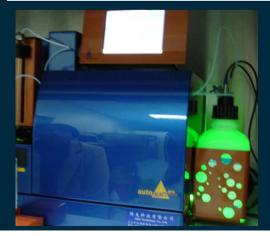
For separation of 1x10⁸ labeled cells

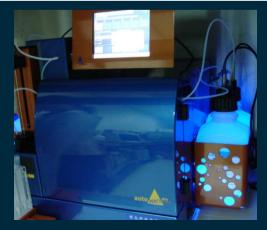
autoMACS[™] **Pro Separator**


Walk-away cell sorter for multiple samples

- Fully AutomatedCleaning, Sample uptake, Separation
- Automated microbead labeling
- >10⁷ cells/ sec
- Processing of up to 6 samples
- Easy-to-use software
- Sensor-controlled process buffer fluid levels, column status, sample rack type, Bottle illumination indicates instrument status.
- Simple three steps:
 - 1. Scan reagents using barcode readerd
 - 2. Position samples and reagents
 - 3. Select the separation strategies
 -Just walk away and have your tea time-

autoMACS[™] Pro Separator

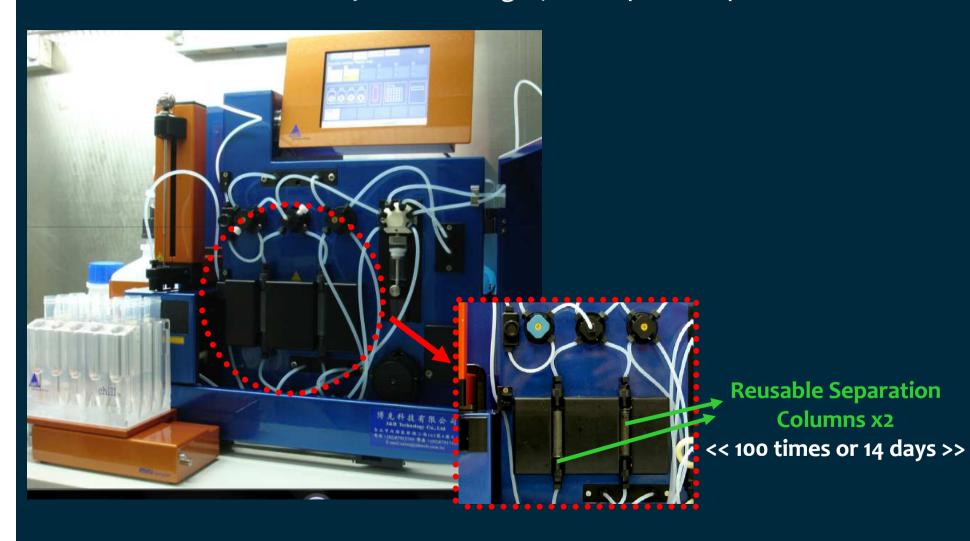

Walk-away cell sorting of multiple samples



Walk-away cell sorting of multiple samples

Bottle illumination indicates status of the instrument

Code	Status	User action	
Green	Ready for separation	No action required	
Blue	Instrument operating	No action required	
Yellow	Not ready for separation	Run wash program	
Red	Error	Check screen for error correction	
Purple	"Sleep" is completed	Switch off autoMACS™ Pro Separator	
Blinking	Action required	Check screen for required action	



Separation Programs

- ✓ Positive V.S Depletion
- ✓ 1 Column V.S double column selection
- ✓ Standard mode V.S sensitive mode(Flow rate)

Objective		Obtain a cell population expressing a particular cell surface antigen		Eliminate cell subset(s) from Sample, obtain 'untouched' cells
Strategy		POSITIVE SELECTION Labeling of target cells		DEPLETION Labeling of non- target cells
		Normal to high frequency (>5%)	Rare cells (<5%), or purity increase	
Program	Normal to high antigen expression	POSSEL Positive selection	POSSELD Double positive selection	DEPLETE Depletion
	Low antigen expression	POSSEL_S Sensitive positive selection	POSSELDS Sensitive double positive selection	DEPLETES Sensitive depletion
	Special programs		POSSELD2 Double positive selection from cord blood, small blood volumes	DEPL05/025 Special sensitive depletion
	;	NEW!	POSSELWB For blood volumes From 0.25–15 mL	A_Depl7 / A_Depls7 Large scale depletion Up to 1.5x109 labeled cells

Walk-away cell sorting of multiple samples

Rinsing and Overnight storage

- Qrinse (Quick Rinse; standard short rinse)
- 1.5 min
- Rinse and refill with Running buffer
- Between standard separations
- Rinse (Intense Rinsing)
- 4 min
- Rinse with autoMACS Pro Washing solution; refill with Running buffer
- Priming, before rare cell sorting, between blood / bone marrow samples
- Sleep (Overnight storage)
- 5 min
- Rinsing of fluid system; refill with Storage solution

How to work with the instrument

Choose a cell separation approach

2. Prepare cell sample

3. Label cells magnetically

4. Prime autoMACS
Pro Separator

5. Define labeling and separation sequence (up to six samples)

6. Perform autoMACS Pro Cell Separation

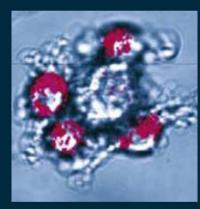
7. Run "Sleep" program and shut down autoMACS Pro.

Downstream Experiments

♦ Cell Culture

Cell culture medium
Cytokines & Growth factor

◆ Cell Analysis



High Quality Antibodies for detecting various of cells

Molecular Biology Research

Application Stem cell Research

- Hematopoietic stem cells / Cancer Stem cells
 - → Enrichment: CD34 、 CD133 、 CD117 microbead kit...

Isolated CD133 cells during cultivation. Cells were stained with CD133/1(AC133)-PE

Brain tumors

70. Singh, S.K. et al. (2003) Cancer Res. 63: 5821-5828. [4254]

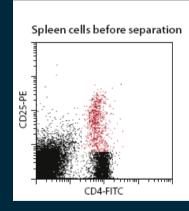

- 71. Singh, S.K. et al. (2004) Nature 432: 396-401.
- 72. Singh, S.K. et al. (2004) Oncogene 23: 7267-7273.
- 73. Taylor, M.D. et al. (2005) Cancer Cell 8: 323-335.
- 74. Collins, A.T. et al. (2005) Cancer Res. 65: 10946-10951. [5322]
- Renal tumors 75. Florek, M. et al. (2005) Cell Tissue Res. 319: 15–26. [8267]
 - 76. O'Brien, C.A. et al. (2007) Nature 445: 106–110.
 - 77. Ricci-Vittiani, L. et al. (2007) Nature 445: 111-115.

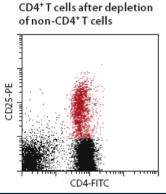
Application

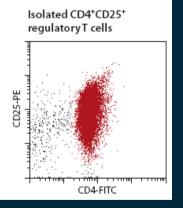
Immunology

T cells

- → Total T cells 、 T cell subsets
- → Naïve T cells 、 Activated T cells 、 Effector T cells 、 Memory T cells
- → Regulatory T cell isolation kit (CD4+CD25+CD127^{dim/-}) 、(CD4+CD25+)


Magnetic labeling of non-CD4 cells

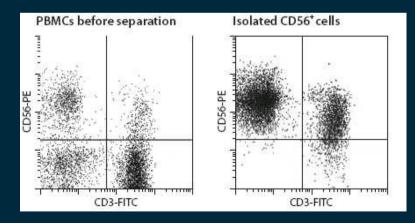



Depletion of non-CD4 cells

Magnetic labeling of non-CD25 cells

Positive selection of **CD4CD25 Regulatory T cells**

References


- Fallarino et al. (2003) Nat. Immunol. 4(12): 1206-12. [3982]
- Schwarz et al. (2004) J. Immunol. 172: 1036-1043. [3791]
- Gangi et al. (2005) J. Immunol. 174: 7006-7013. [7184]
- Turk et al. (2004) J. Ex. Med. 200(6): 771-782. [6334] Kashiwada et al. (2006) J. Immunol. 176: 3958-3965. [8594]
- Choileain et al. (2006) J. Immunol. 176: 225-236. [9411]

J & H

Application

Immunology

- B cells and B cell subsets
- Monocytes
 - → CD11b(MAC-1) 、CD14 、CD16 、Slan 、 Monocytes Isolation kit
- NK cells
 - → CD56、CD49b(DX5)、NK cell isolation kit

Separation of CD56+ NK cells from human PBMC using CD56 microbeads

References

- Xu, S. et al. (2006) Stem Cells and Dev. 15: 631–639.
- 2. Sinanan, A. et al. (2004) Biotechnol. Appl. Biochem. 40: 25-34.
- 3. De Luna, N. et al. (2006) J. Biol. Chem. 281: 17092-17098.
- 4. Pitti et al. (1998) Nature 396: 699-703. [517]
- Fletcher et al. (1998) J. Immunol. 161: 2365–2374. [558]
- Doherty et al. (1999) J. Immunol. 163: 2314–2321. [1641]
- 7. Kumaki et al. (2001) Blood 98: 1464-1468. [2250]

Thank you for your attention!

