

Net-work Meta-analysis 網絡統合分析基礎訓練

醫學研究部 基礎醫學科 生統小組:陳韻伃 博士 授課日期:113年6月26日

實證醫學的證據等級

實證醫學的證據等級

- 文獻的證據等級與研究設計相關
- 證據的等級:良好研究設計可以減少偏差的程度→隨機對照試驗 (RCT)

表一	Oxford證據等級與建議等級 ^{6,9}
----	--------------------------------

建議等級	證據等級	證據的型態
(A)	1a	同質性隨機對照試驗的系統性回顧
	1b	單獨的隨機對照試驗
	1c	如果沒有給藥的全部病人會死,給藥後會有一些病人存活;或是如果沒有給藥會 有一些病人死亡,而給藥後就不會有病人死亡。
	2a	同質性世代研究的系統性文獻回顧
	2b	單獨的世代研究
(B)	2c	結果研究或生態研究
	3a	同質性個案研究的系統性文獻回顧
	3b	單獨的個案對照研究
(C)	4	個案發現報告或是品質較差的世代研究和個案對照研究
(D)	5	未經清楚且嚴謹的專家意見

為什麼要進行Meta-analysis?

統合多個臨床研究的樣本數和結果,證據力高 花費研究經費和人力相對低

Meta-analysis

Major gastrointestinal bleeding risk: comparison of DOACs Radadiya et al.

		DOAC	Conver	ntional				
Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI	Weight
DOAC = Apixaban								
ADOPT 2011	5	3184	2	3217	- •	2.53	[0.49; 13.04]	1.2%
ADVANCE-1 2009	1	1596	6	1588		0.17	[0.02; 1.37]	0.7%
ADVANCE-2 2010	1	1501	2	1508		0.50	[0.05; 5.54]	0.6%
ADVANCE-3 2010	4	2673	0	2659		- 8.97	[0.48; 166.62]	0.4%
ARISTOTLE 2011	105	9088	119	9052		0.88	[0.67; 1.14]	16.1%
Random effects model		18042		18024		0.97	[0.40; 2.36]	19.1%
Heterogeneity: $I^2 = 40\%$, $\tau^2 =$	0.3997, p	= 0.16						
DOAC = Edoxaban								
Chung 2011	0	159	1	75		0.16	[0.01; 3.87]	0.3%
Daichi Sankyo 2015	0	159	1	75		0.16	[0.01; 3.87]	0.3%
ENGAGE AF-TIMI 48 2013	361	14014	190	7012	İ	0.95	[0.79; 1.13]	19.6%
Hokusai-VTE 2013	15	4118	12	4122	- -	1.25	[0.59; 2.68]	4.8%
Weitz 2010	0	469	0	250				0.0%
Raskob 2010	0	358	0	172				0.0%
Random effects model		19277		11706	ą.	0.95	[0.80; 1.13]	25.0%
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$	p = 0.40)						
DOAC = Rivaroxaban								
J-ROCKET AF 2012	7	639	15	639		0.46	[0.19; 1.14]	3.6%
MAGELLAN 2013	12	3997	7	4001	- -	1.72	[0.68; 4.37]	3.4%
ODIXa-HIIP 2006	0	136	1	132		0.32	[0.01; 7.95]	0.3%
RECORD1 2008	2	2209	1	2224		2.01	[0.18; 22.23]	0.6%
RECORD2 2008	1	1228	0	1229		3.00	[0.12; 73.83]	0.3%
RECORD3 2008	1	1220	0	1239		3.05	[0.12; 74.92]	0.3%
RECORD4 2009	4	1526	1	1508		3.96	[0.44; 35.48]	0.7%
ROCKET AF 2011	224	7111	154	7125	-	1.47	[1.20; 1.81]	18.4%
X-VERT 2014	1	988	0	499		1.52	[0.06; 37.32]	0.3%
Random effects model		19054		18596	•	1.36	[1.02; 1.83]	28.0%
Heterogeneity: $l^2 = 5\%$, $\tau^2 = 0$.0184, p :	= 0.39						
DOAC = Dabigatran								
RE-CIRCUIT 2018	1	338	2	338		0.50	[0.04; 5.52]	0.6%
RE-COVER 2009	9	1274	5	1265	- [* -	1.79	[0.60; 5.36]	2.6%
RE-COVER II 2014	6	1279	10	1289		0.60	[0.22; 1.66]	2.9%
RE-LY 2009	315	12091	120	6022		1.32	[1.06; 1.63]	18.2%
RE-MEDY 2013	5	1430	8	1425		0.62	[0.20; 1.90]	2.5%
RE-MODEL 2007	1	1382	0	694		1.51	[0.06; 37.07]	0.3%
RE-NOVATE 2007	1	2311	1	1154		0.50	[0.03; 7.99]	0.4%
Boehringer Inglelheim 2014	1	1728	0	868		1.51	[0.06; 37.06]	0.3%
Random effects model		21833		13055	0	1.25	[1.02; 1.52]	27.9%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, p = 0.64							
Random effects model		78206		61381	•	1.09	[0.90; 1.31]	100.0%
Heterogeneity: $l^2 = 31\%$, $\tau^2 =$	0.0377, p	= 0.07			0.01 0.1 1 10	×00		
Residual heterogeneity: $I^2 = 5$	%, p = 0.	40						
Test for overall effect: z = 0.89	(p = 0.38)	3)	1	Less Ma	jor GI bleeding More Major	GI bleedi	ng	

Fig. 3. Forest plots of direct pair-wise comparisons between direct oral anticoagulant (DOAC) and conventional agents: (a) subgrouped by DOAC type and (b) subgrouped by DOAC type and control type (W: warfarin, E: enoxaparin).

(a) Comparison: other vs 'Warfarin' (Random Effects Model) OR 95%-CI Anticoagulant Apixaban 0.87 [0.58; 1.30] Dabigatran 1.14 [0.82; 1.58] 0.96 [0.68; 1.34] Edoxaban Enoxaparin 0.77 [0.40; 1.46] Rivaroxaban 1.28 [0.91; 1.81] Warfarin 1.00 0.4 0.5

Less Major GI bleeding More Major GI bleeding

Quantifying heterogeneity / inconsistency: $tau^2 = 0.0277; I^2 = 7.1\%$ Tests of heterogeneity (within designs) and inconsistency (between designs):Qd.f. p-valueTotal22.61210.3654Within designs22.20190.2746Between designs0.4120.8153

Fig. 4. Forest plots of network comparison in reference to warfarin: (a) individual direct oral anticoagulants (DOACs) as groups

Network Meta-analysis

Major gastrointestinal bleeding risk: comparison of DOACs Radadiya et al.

www.eurojgh.com e53

安裝Network Meta-analysis相關套件

*從以下開始安裝 * MA/NMA net from "http://www.homepages.ucl.ac.uk/~rmjwiww/stata/meta/" net install network.pkg, replace net install mvmeta.pkg, replace

*Network plot ssc install netplot net from "https://clinicalepidemio.fr/Stata" net install network_graphs.pkg, replace net install metamiss2.pkg, replace

help network graph

SJ-15-4 st0411 . Visualizing assumptions and results in network meta-analysis A. Chaimani and G. Salanti (help network graphs, clusterank, ifplot, intervalplot, mdsrank, netfunnel, netleague, netweight, networkplot, sucra if installed) Q4/15 SJ 15(4):905--950 provides a suite of commands with graphical tools to facilitate the understanding of data, the evaluation of assumptions, and the interpretation of findings from network meta-analysis

* SE code

net from "http://www.stata-journal.com/software/sj10-4/" net install st0043_2.pkg, replace

Preparing for Analysis: 先設定長檔案 For binary (count) data:

use "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\112年 生統課程規劃\護理部-Stata\Stata-Network meta_new\long_data.dta ", clear

network setup d n, studyvar (study) trtvar(trt) ref(A)

File	Data Editor (Brow Edit View	vse) - [long_o Data To	data] ools Q T _		d: number of events n: total sample size studyvar → study: variable of study title trtvar → trt: variable of treatment
	stud	y[1]	A	Alshryda201	
	study	d	n	trt	rer: A of Flacebo
1	Alshryda2013	10	80	c	
2	Alshryda2013	26	81	A	
3	Barrachina2016	8	35	E	
4	Barrachina2016	4	36	В	
5	Barrachina2016	14	37	А	
6	Benoni2000	9	20	В	
7	Benoni2000	15	19	А	
8	Benoni2001	4	18	E	

先設定檔案 for Network Meta-analysis

9

Α

Placebo

network setup d n, studyvar (study) trtvar(trt) ref(A)

В

IV_single

USE

С

IV_double

USE

()	<pre>. network setup d n, studyvar (study) Treatments used</pre>	trtvar(trt) ref(A) A B C D E	
E	Measure Studies ID variable: Number dropped:	Log odds ratio study 1	
Combinatio n_IV_and_t opical	Number used: IDs with zero cells: - count added to all their cells: IDs with augmented reference arm: - observations added: - mean in augmented observations: Network information Components: D.f. for inconsistency: D.f. for heterogeneity: Current data Data format: Design variable: Estimate variables: Variance variables: Command to list the data:	24 "Xie2016"' "Yamasaki2004"' .5 "North2016"' "Xie2016"' 0.00001 study-specific mean 1 (connected) 8 16 augmented _design _y* _S* list study _y* _S*, noo sepby(_design)	

	study[1] Alshryda2013																
	study	dA	nA	dB	nB	dC	nC	dD	nD	dE	nE	_design	_y_B	_y_c	_y_D	_y_E	_S_B_B
1	Alshryda2013	26	81			10	80					A C		-1.1966735			
2	Barrachina2016	14	37	4	36					8	35	ABE	-1.5830047			71995844	.3961568
3	Benoni2000	15	19	9	20							A B	-1.5224265				.5186868
4	Benoni2001	8	20							4	18	A E				84729786	
5	Claeys2007	6	20							1	20	A E				-2.0971411	
6	Ekb2000	1	20	1	20							A B	0				2.105263
7	Fraval2017	6	51	1	50							A B	-1.8769173				1.209297
8	Garneti2004	14	25							16	25	A E				.33420209	
9	Hsu2015	9	30	2	30							A B	-1.7917595				.6944444
10	Husted2003	7	20	2	20							A B	-1.5781854				.7753357
11	Johansson2005	23	53							8	47	AE				-1.3184169	

D

Topical_use

Step 1: Generating Network Geometry Network plot: 輸入指令 network map C ● 所包含研究的數量 所使用相關數據的數量

Step 2: Testing for Inconsistency

11

■ Global inconsistency Test 輸入指令 network meta inconsistency

Method = reml Restricted lo	g likelihood =	-34.684006		Number o	f dimensions f observations	= 4 5 = 24
	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
у В						
des_ABE	2177834	.6846	-0.32	0.750	-1.559575	1.124008
_cons	-1.365221	.269296	-5.07	0.000	-1.893032	8374108
_y_c						
des_ACE	6561662	.6028711	-1.09	0.276	-1.837772	.5254395
des_BC	.1947812	.6700162	0.29	0.771	-1.118426	1.507989
des_CDE	.6167358	.974232	0.63	0.527	-1.292724	2.526195
_cons	-1.070454	.3665995	-2.92	0.004	-1.788976	3519321
_y_D						
des_CDE	.6929186	1.922747	0.36	0.719	-3.075596	4.461433
_cons	-3.402272	1.051331	-3.24	0.001	-5.462844	-1.3417
_y_E						
des_ACE	9961905	.7114154	-1.40	0.161	-2.390539	.3981581
des_ADE	4487215	.7145929	-0.63	0.530	-1.849298	.9518549
des_AE	2528214	.5704532	-0.44	0.658	-1.370889	.8652463
cons	7199583	.5262546	-1.37	0.171	-1.751398	.3114817

Estimated between-studies SDs and correlation matrix

	SD	_y_B	_y_c	_y_D	_y_E
_y_B	3.083e-07	1			
_y_c	3.083e-07	.5	1		
_y_D	3.083e-07	.5	.5	1	
_y_E	3.083e-07	.5	.5	.5	1

Estim	ated between-	studies SDs	and correla	ation matrix	
	SD	_y_B	_y_c	_y_D	_y_E
_y_B	3.083e-07	1			
_y_c	3.083e-07	.5	1		
y_D	3.083e-07	.5	.5	1	
_y_E	3.083e-07	.5	.5	.5	1

Testing for inconsistency:

- (1) [_y_B]des_ABE = 0
 (2) [_y_E]des_ACE = 0
 (3) [_y_C]des_ACE = 0
 (4) [_y_E]des_ADE = 0
 (5) [_y_E]des_AE = 0
 (6) [_y_C]des_BC = 0
- (7) [_y_C]des_CDE = 0
- (8) [_y_D]des_CDE = 0

	(8) =	4.09
Prob > chi2 = 0.8492	chi2 =	0.8492

無法拒絕虛無假說 一致性 consistency 的水準可接受

Step 2: Testing for Inconsistency

Local inconsistency Test 輸入指令 network sidesplit all

network sidesplit all

無法拒絕虛無假說 一致性 consistency 的水準可

Side	Direct		Indirect		Difference			
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	P> z	
АВ	-1.387832	.246631	-1.834588	.5000808	.4467555	.5475861	0.415	
AC	-1.346768	.2878734	7355726	.4132222	6111958	.4901931	0.212	
A D	-3.420298	.939617	-3.203182	1.005883	2171159	.9367965	0.817	
AE	-1.08404	.1738511	7891631	.6352852	2948771	.6513169	0.651	
ВС	.4895483	.4919413	.2233391	.3632928	.2662092	.6115455	0.663	
ΒE	.8919491	.655003	.3065194	.2968191	.5854297	.7146861	0.413	
CD	-2.534345	1.25485	-2.009367	.9639263	5249778	1.320922	0.691	
CE	0989284	.4620928	.1914716	.3474008	2904	.5783735	0.616	
DE*	2.152297	.8813737	2.593058	1.087671	4407617	.8966076	0.623	

Because inconsistency was found to be absent in both global and local tests, the consistency assumption was accepted

13

► 先設定 network meta consistency

. network meta consistency Command is: mvmeta y S , bscovariance(exch 0.5) longparm suppress(uv mm) vars(y B y C y D y E) Note: using method reml Note: using variables _y_B _y_C _y_D _y_E Note: 24 observations on 4 variables Note: variance-covariance matrix is proportional to .5*I(4)+.5*J(4,4,1) initial: log likelihood = -49.494181 log likelihood = -49.494181 rescale: rescale eq: log likelihood = -41.242314 Iteration 0: log likelihood = -41.242314 log likelihood = -41.138072 Iteration 1: log likelihood = -41.13807 Iteration 2: Multivariate meta-analysis Variance-covariance matrix = proportional .5*I(4)+.5*J(4,4,1) Number of dimensions Method = reml 4 = Restricted log likelihood = -41.13807 Number of observations = 24 Coefficient Std. err. z P> | z | [95% conf. interval] _y_B _cons -1.470223 .2250083 -6.53 0.000 -1.911231-1.029215 _y_c -1.152938 .2422897 -1.627817 _cons -4.76 0.000 -.6780585 _y_D _cons -3.327687 .8504168 -3.91 0.000 -4.994473-1.660901 _y_E cons -1.066367 .1694118 -6.29 0.000 -1.398408 -.7343258

Estimated between-studies SDs and correlation matrix

	SD	_y_B	_y_c	_y_D	_y_E
_y_B	2.246e-07	1			
_y_c	2.246e-07	.5	1		
_y_D	2.246e-07	.5	.5	1	
_y_E	2.246e-07	.5	.5	.5	1

■ Network forest plot (NFP) 輸入:

network forest

Test of consistency: chi2(8)=4.09, P=0.849

15

Network forest plot (NFP) 輸入:

network forest, msize (*0.15) diamond eform xlabel (0.1 1 10 100) colors (black blue red) list

<diamond> uses a diamond shape to show summary effect sizes

<eform> generates transformed indices to make it easy to interpret the forest plot

16

■ Network forest plot (NFP) 輸入:

intervalplot

17

Network forest plot (NFP) and interval plot 輸入:

intervalplot, eform

ES: effect size

<eform> generates transformed indices to make it easy to interpret the forest plot

Network forest plot (NFP) and interval plot 輸入:

intervalplot, eform null (1) labels (Placebo IV_single IV_double Topical Combination) margin (10 8 5 10) textsize (2) xlabel (0.01 0.1 1 10)

intervalplot, eform null (1) labels (Placebo IV_single IV_double Topical Combination) separate margin (10 8 5 10) textsize (2) xlabel (0.01 0.1 1 10)

<eform> generates transformed
indices to make it easy to
interpret the forest plot

<separate> and < margin>

set the ranges to generate easyto-read plots, the values of which should be appropriately determined by the user

Figure 5. Interval plot. Cl, confidence interval

Step 4: Determining Relative Rankings of Treatments

19

Identify superiority 輸入:

network rank min

network rank min

Command is: mvmeta, noest pbest(min in 1, zero id(study) stripprefix(_y_) zeroname(A) rename(A = A, B = B, C = C, D = D, E = E))

Estimated probabilities (%) of each treatment having each rank

- assuming the minimum parameter is the best

- using 1000 draws

- allowing for parameter uncertainty

	Treatment				
Rank	A	В	С	D	E
Best	0.0	1.4	0.4	98.1	0.1
2nd	0.0	81.2	12.5	1.1	5.2
3rd	0.0	13.4	51.3	0.2	35.1
4th	0.0	4.0	35.8	0.6	59.6
Worst	100.0	0.0	0.0	0.0	0.0

network rank max

network rank max

```
Command is: mvmeta, noest pbest(max in 1, zero id(study) stripprefix(_y_) zeroname(A) rename(A = A, B = B, C = C, D = D, E = E))
```

Estimated probabilities (%) of each treatment having each rank

assuming the maximum parameter is the best

using 1000 draws

- allowing for parameter uncertainty

	Treatment				
Rank	A	В	С	D	E
Best	100.0	0.0	0.0	0.0	0.0
2nd	0.0	3.0	33.7	0.3	63.0
3rd	0.0	13.3	54.2	0.3	32.2
4th	0.0	82.0	12.0	1.2	4.8
Worst	0.0	1.7	0.1	98.2	0.0

Step 4: Determining Relative Rankings of Treatments

20

Identify superiority 輸入:

network rank min, line cumulative xlabel (1/5) seed (10000) reps (10000) meanrank

Estimated probabilities (%) of each treatment hav

- assuming the minimum parameter is the best
- using 10000 draws

- allowing for parameter uncertainty

	Treatment						
Rank	Α	В	С	D	E		
Best	0.0	1.5	0.2	98.3	0.0		
2nd	0.0	80.1	13.7	1.0	5.2		
3rd	0.0	15.4	50.3	0.3	34.0		
4th	0.0	3.0	35.8	0.4	60.8		
Worst	100.0	0.0	0.0	0.0	0.0		
IEAN RANK	5.0	2.2	3.2	1.0	3.6		
SUCRA	0.0	0.7	0.4	1.0	0.4		

SUCRA: Surface under the cumulative ranking \rightarrow more precise estimation of cumulative ranking probabilities

Step 3: Creating Plots and League Table of Effect Size by Treatment Step 5: Checking for Publication Bias

use "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\112年生統課程規劃\護理部-Stata\Stata-Network meta_new\funnel plot.dta ", clear

▶ Comparative effect size (diff) and standard error (se) for each pair of treatment 輸入:

network forest, msize (*0.15) diamond eform xlabel (0.1 1 10 100) colors (black blue red) list

. network forest, msize (*0.15) diamond eform xlabel (0.1 1 10 100) colors (black blue red) list Warning: inconsistency matrix of fitted values not found - forest plot will be incomplete Listing of results extracted from current data and saved network meta-analyses:

	t1	t2	design	type	studyvar	diff	se
1.	Α	в	ABE	study	Barrachina2016	-1.5830047	.62940991
2.	Α	В	AB	study	Benoni2000	-1.5224265	.72019919
3.	Α	В	AB	study	Ekb2000	0	1.4509525
4.	Α	В	AB	study	Fraval2017	-1.8769173	1.0996804
5.	Α	В	AB	study	Hsu2015	-1.7917595	.83333333
6.	Α	В	AB	study	Husted2003	-1.5781854	.88053153
7.	Α	В	AB	study	Lee2013	-1.3783262	.52205333
8.	Α	В	AB	study	Lemay2004	-1.6204877	.69403529
9.	Α	В	AB	study	Niskanen2005	62415431	.69264847
10.	Α	В		cons		-1.4702229	.22500835
11.	Α	с	AC	study	Alshryda2013	-1.1966735	.41343569
12.	Α	С	AC	study	Martin2014	6061358	.79296146
13.	Α	С	ACE	study	Wei2014	-1.7266202	.47860044
14.	Α	С		cons		-1.1529375	.24228968
15.	А	D	ADE	study	Yi2016	-3.4022721	1.0513314
16.	Α	D		cons		-3.327687	.85041684
17.	Α	E	ABE	study	Barrachina2016	71995844	.52625457
18.	Α	E	AE	study	Benoni2001	84729786	.72784745
19.	Α	E	AE	study	Claeys2007	-2.0971411	1.1361016
20.	Α	E	AE	study	Garneti2004	.33420209	.57961088

Step 3: Creating Plots and League Table of Effect Size by Treatment Step 5: Checking for Publication Bias

► Network Funnel Plot 輸入:

netfunnel diff se t1 t2, random bycomparison

總結

- 僅由單一個隨機分派研究的結果來下結論是一種比較危險的行為,萬一這個 結果有隨機錯誤時(error by chance),我們就有可能對某個醫學議題造成 誤判。
- 統合分析可以提供較客觀的整合分析結果,對於不合適的研究我們也可藉由 敏感性分析將其剔除,而使分析結果更正確。
- 隨機分派研究與觀察性研究的證據強度(level of evidence)是不同的,我 們在看一篇統合分析的論文時一定要注意所選取論文的研究種類、品質、和 訊息強度。

統合分析和隨機分派研究論文結果牴觸的可能原因: 某些特定族群被過度呈現

生統小組:統計方法教育訓練

滿意度問卷QR Code

Thank you for listening