

進階臨床試驗 Meta-analysis 統合分析實務

醫學研究部 基礎醫學科 生統小組:陳韻伃 博士 授課日期:112年7月12日

百年前的「臨床試驗」

- 詹姆斯·林德 (James Lind, 1716年 1794年 6月13日)
 - 英國皇家海軍外科醫生(1739年-1748年)·英格蘭衛生學的創始人
 - 發起利用柑桔類水果和新鮮蔬菜治療和預防壞血病
 - A treatise of the scurvy 壞血病論

百年前的「臨床試驗」

- 百年前的歐洲,長期在海上航行的水手經常遭受壞血病的折磨,患者常常牙齦出血,甚至皮膚淤血和滲血,最後痛苦地死去,人們一直查不出病因。奇怪的是,只要船隻靠岸,這種疾病很快就不治而癒了。
- 問題:水手們為什麼會得壞血病呢?
- 書中提到他在1747年在船上做了一個臨床試驗:
 - 出現壞血病的船員,大家都吃完全相同的食物
 - 唯一不同的是有些病人每天吃兩個橘子和一個檸檬,其他的人喝蘋果 酒、稀硫酸、醋、海水。
- 實驗的結論:吃柑橘水果的兩人好轉,其它人病情依然。

- 從現代的觀點看,林德的臨床試驗不夠嚴謹:
 - 病人的分派 Allocation
 - 每一組的病人數 Sample size
 - 臨床指標 Clinical indication / Outcome
 - 統計分析 Statistical analysis

- Deviation of study result from the truth · 不能靠統計處理
- 測量時即發生錯誤 (內因): Information bias, recall bias, report bias
- 外因: Confounding bias ~ Confounding factors
- Risk of Bias
 - In fact, we never know the truth
 - The results from a study might be unbiased despite methodological flaws
 - ✓ E.g., poor randomization or lost to follow up, but unbiased results

實證醫學的證據等級

實證醫學的證據等級

- 文獻的證據等級與研究設計相關
- 證據的等級:良好研究設計可以減少偏差的程度→隨機對照試驗 (RCT)

表一	Oxford證據等級與建議等級 ^{6,9}
----	--------------------------------

建議等級	證據等級	證據的型態
	1a	同質性隨機對照試驗的系統性回顧
(A)	1b	單獨的隨機對照試驗
	1c	如果沒有給藥的全部病人會死,給藥後會有一些病人存活;或是如果沒有給藥會 有一些病人死亡,而給藥後就不會有病人死亡。
	2a	同質性世代研究的系統性文獻回顧
	2b	單獨的世代研究
(B)	2c	結果研究或生態研究
	3a	同質性個案研究的系統性文獻回顧
	3b	單獨的個案對照研究
(C)	4	個案發現報告或是品質較差的世代研究和個案對照研究
(D)	5	未經清楚且嚴謹的專家意見

為什麼要進行Meta-analysis?

統合多個臨床研究的樣本數和結果,證據力高 花費研究經費和人力相對低

Meta-analysis

Major gastrointestinal bleeding risk: comparison of DOACs Radadiya et al.

Fig. 2. Network graph showing direct comparisons available between anticoagulants (line width represents the number of trials for every pair): (a) anticoagulants grouped by type and (b) anticoagulants grouped by dosage and type.

Meta-analysis

Major gastrointestinal bleeding risk: comparison of DOACs Radadiya et al.

		DOAC	Conver	ntional				
Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI	Weight
DOAC = Apixaban								
ADOPT 2011	5	3184	2	3217	- •	2.53	[0.49; 13.04]	1.2%
ADVANCE-1 2009	1	1596	6	1588		0.17	[0.02; 1.37]	0.7%
ADVANCE-2 2010	1	1501	2	1508		0.50	[0.05; 5.54]	0.6%
ADVANCE-3 2010	4	2673	0	2659		- 8.97	[0.48; 166.62]	0.4%
ARISTOTLE 2011	105	9088	119	9052		0.88	[0.67; 1.14]	16.1%
Random effects model		18042		18024		0.97	[0.40; 2.36]	19.1%
Heterogeneity: $I^2 = 40\%$, $\tau^2 =$	0.3997, p	= 0.16						
DOAC = Edoxaban								
Chung 2011	0	159	1	75		0.16	[0.01; 3.87]	0.3%
Daichi Sankyo 2015	0	159	1	75		0.16	[0.01; 3.87]	0.3%
ENGAGE AF-TIMI 48 2013	361	14014	190	7012	İ	0.95	[0.79; 1.13]	19.6%
Hokusai-VTE 2013	15	4118	12	4122	- -	1.25	[0.59; 2.68]	4.8%
Weitz 2010	0	469	0	250				0.0%
Raskob 2010	0	358	0	172				0.0%
Random effects model		19277		11706	ą.	0.95	[0.80; 1.13]	25.0%
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, p = 0.40)						
DOAC = Rivaroxaban								
J-ROCKET AF 2012	7	639	15	639		0.46	[0.19; 1.14]	3.6%
MAGELLAN 2013	12	3997	7	4001	- -	1.72	[0.68; 4.37]	3.4%
ODIXa-HIIP 2006	0	136	1	132		0.32	[0.01; 7.95]	0.3%
RECORD1 2008	2	2209	1	2224		2.01	[0.18; 22.23]	0.6%
RECORD2 2008	1	1228	0	1229		3.00	[0.12; 73.83]	0.3%
RECORD3 2008	1	1220	0	1239		3.05	[0.12; 74.92]	0.3%
RECORD4 2009	4	1526	1	1508		3.96	[0.44; 35.48]	0.7%
ROCKET AF 2011	224	7111	154	7125	-	1.47	[1.20; 1.81]	18.4%
X-VERT 2014	1	988	0	499		1.52	[0.06; 37.32]	0.3%
Random effects model		19054		18596	•	1.36	[1.02; 1.83]	28.0%
Heterogeneity: $l^2 = 5\%$, $\tau^2 = 0$.0184, p :	= 0.39						
DOAC = Dabigatran								
RE-CIRCUIT 2018	1	338	2	338		0.50	[0.04; 5.52]	0.6%
RE-COVER 2009	9	1274	5	1265	- [* -	1.79	[0.60; 5.36]	2.6%
RE-COVER II 2014	6	1279	10	1289		0.60	[0.22; 1.66]	2.9%
RE-LY 2009	315	12091	120	6022		1.32	[1.06; 1.63]	18.2%
RE-MEDY 2013	5	1430	8	1425		0.62	[0.20; 1.90]	2.5%
RE-MODEL 2007	1	1382	0	694		1.51	[0.06; 37.07]	0.3%
RE-NOVATE 2007	1	2311	1	1154		0.50	[0.03; 7.99]	0.4%
Boehringer Inglelheim 2014	1	1728	0	868		1.51	[0.06; 37.06]	0.3%
Random effects model		21833		13055	0	1.25	[1.02; 1.52]	27.9%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, p = 0.64							
Random effects model		78206		61381	•	1.09	[0.90; 1.31]	100.0%
Heterogeneity: $l^2 = 31\%$, $\tau^2 =$	0.0377, p	= 0.07			0.01 0.1 1 10	×00		
Residual heterogeneity: $I^2 = 5$	%, p = 0.	40						
Test for overall effect: z = 0.89	(p = 0.38)	3)	1	Less Ma	jor GI bleeding More Major	GI bleedi	ng	

Fig. 3. Forest plots of direct pair-wise comparisons between direct oral anticoagulant (DOAC) and conventional agents: (a) subgrouped by DOAC type and (b) subgrouped by DOAC type and control type (W: warfarin, E: enoxaparin).

(a) Comparison: other vs 'Warfarin' (Random Effects Model) OR 95%-CI Anticoagulant Apixaban 0.87 [0.58; 1.30] Dabigatran 1.14 [0.82; 1.58] 0.96 [0.68; 1.34] Edoxaban Enoxaparin 0.77 [0.40; 1.46] Rivaroxaban 1.28 [0.91; 1.81] Warfarin 1.00 0.4 0.5

Less Major GI bleeding More Major GI bleeding

Quantifying heterogeneity / inconsistency: $tau^2 = 0.0277; I^2 = 7.1\%$ Tests of heterogeneity (within designs) and inconsistency (between designs):Qd.f. p-valueTotal22.61210.3654Within designs22.20190.2746Between designs0.4120.8153

Fig. 4. Forest plots of network comparison in reference to warfarin: (a) individual direct oral anticoagulants (DOACs) as groups

Stata 統計軟體教育訓練課程

Meta-analysis

Quick Tutorial to Stata

To Install and update the metan module in Stata 9.0 \uparrow (因為舊版每次都要更新)

Command	2 - Stata/IC 11.1 - [Results]	
Command	File Edit Data Graphics Statistics User Window Hel	1p
search(metan)	Review	x Q2/08 SJ 8(2):242254 provides contour-enhanced funnel plots for meta-analysis
2 Under STB-44, click on she24	4 insheet using "D:\助理研究員\中榮罄研部-生統小 7 search(metan)	<pre>SJ-8-1 sbe24_2 metan: fixed- and random-effects meta-analysis Harris, Bradburn, Deeks, Harbord, Altman, and Sterne (help funnel, labbe, metan if installed) Q1/08 SJ 8(1):328 update of meta-analysis command metan including modern graphics, the ability to meta-analyze precalculated effect estimates, and analyze subgroups</pre>
Under STB-45, click on sbe24.1		<pre>SJ-4-2 pr0012 Submenu and dialogs for meta-analysis commands (help meta_dialog if installed)</pre>
(按−more−或空白鍵・可以到トー頁)		<pre>SJ-4-2 st0061 Funnel plots in meta-analysis (help metafunnel if installed) J. A. C. Sterne and R. M. Harbord Q2/04 SJ 4(2):127141 discusses funnel plots, possible causes of asymmetry, and</pre>
3 若 metan 不是最新版本,輸入指令:	Variables Name Label Type Form	STB-45 sbe24.1
which metan ssc install metaaggr, all replace	trial byte %8.0g trialnam str14 %14s authors str20 %20s	9/98 p.21; STB Reprints Vol 8, p.100 STB-44 sbe24 metan an alternative meta-analysis command (help metan if installed) Bradburn, Deeks, & Altman 7/08 pp.4 15: STB Deprints Vol 8 pp.86 100
. which metan c:\ado\plus\m\metan.ado *! version 4.06 12oct2022 *! Current version by David Fisher *! Previous versions by Ross Harris and	int %8.0g int %8.0g byte %8.0g byte %8.0g int %8.0g byte %8.0g int %8.0g byte %8.0g int %8.0g int %8.0g byte %8.0g int %8.0g byte %8.0g int %8.0g byte %8.0g int %8.0g int %8.0g byte %8.0g int %8.0	<pre>7/98 pp.415; STB Reprints Vol 8, pp.86100 meta-analysis command for studies with two groups (end of search) . Command search[metan]</pre>
4 若需要指令的協助: help (metan)	search (metan)	

For binary (count) data: 4 variables (2*2 data)

insheet using "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\111年 第4季\20221228-初探Meta-analysis\bcg.csv", clear

四組數字: tcases tnoncases ccases cnoncases

metan tcases tnoncases ccases cnoncases

兩組數字: logRR, selogRR gen logRR = ln((tcases/ttotal)/(ccases/ctotal)) gen selogRR = sqrt(1/tcases +1/ccases -1/ttotal -1/ctotal)

> --Two variables: metan loges seloges metan logRR selogRR (log, effect sizes)(standard error, log, effect sizes)

<mark>三組數字: RR, UL, LL</mark> 3組數字轉2組數字 gen logrr=ln(rr)

gen selogrr=(ln(ul)-ln(ll))/3.92

insheet using "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\111年 第4季\20221228-初探Meta-analysis\nodm.csv", clear

--Three variables: metan loges logIl logul metan rr II ul

(log, effect sizes)(log, lower and upper limits)

insheet using "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃 -2022oct\111年第4季\20221228-初探Meta-analysis\bcg.csv", clear

	trial	trialnam	authors	pubyr	startyr	latitude	alloc	tcases	tnoncases	ccases	cnoncases	ttotal	ctotal
1	2	Canada	Ferguson & Simes	1949	1933	55	1	6	300	29	274	306	303
2	1	Northern USA	Aronson	1948	1935	52	1	4	119	11	128	123	139
з	8	Chicago	Rosenthal et al	1961	1941	42	0	17	1699	65	1600	1716	1665
4	10	Georgia (Sch)	Comstock & Webster	1969	1947	33	0	5	2493	3	2338	2498	2341
5	9	Puerto Rico	Comstock et al	1974	1949	18	0	186	50448	141	27197	50634	27338
6	11	Georgia (Comm)	Comstock et al.	1976	1950	33	0	27	16886	29	17825	16913	17854
7	4	Madanapalle	Frimont-Moller et al	1973	1950	13	0	33	5036	47	5761	5069	5808
8	3	UK	Hart & Sutherland	1977	1950	53	1	62	13536	248	12619	13598	12867
9	7	South Africa	Coetzee & Berjak	1968	1965	27	1	29	7470	45	7232	7499	7277
10	5	Haiti	Vandeviere et al	1973	1965	18	1	8	2537	10	619	25 45	629
11	6	Madras	TB Prevention Trial	1980	1968	13	1	505	87886	499	87892	88391	88391
12	12	Unknown	Rosenthal et al	1960	1945	42	1	3	228	11	209	231	220
13	13	Unknown	Stein and Aronson	1953	1940	52	0	180	1361	372	1079	1541	1451

insheet using "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\111年 第4季\20221228-初探Meta-analysis\bcg.csv", clear

metan tcases tnoncases ccases cnoncases

. metan tcases tnoncas	ses ccases	cnoncases			
Study	RR	[95% Conf.	Interval]	% Weight	
1	0.205	0.086	0.486	1.85	
2	0.411	0.134	1.257	0.66	
3	0.254	0.149	0.431	4.19	
4	1.562	0.374	6.528	0.20	
5	0.712	0.573	0.886	11.64	
6	0.983	0.582	1.659	1.79	
7	0.804	0.516	1.254	2.78	
8	0.237	0.179	0.312	16.19	
9	0.625	0.393	0.996	2.90	
10	0.198	0.078	0.499	1.02	
11	1.012	0.895	1.145	31.71	
12	0.260	0.073	0.919	0.72	
13	0.456	0.387	0.536	24.35	
M-H pooled RR	0.635	0.588	0.686	100.00	

Heterogeneity chi-squared = 152.57 (d.f. = 12) p = 0.000 I-squared (variation in RR attributable to heterogeneity) = 92.1%

Test of RR=1 : z= 11.53 p = 0.000

Study % ID RR (95% CI) Weight 1 0.20 (0.09, 0.49) 1.85 0.66 2 0.41 (0.13, 1.26) 3 0.25 (0.15, 0.43) 4.19 1.56 (0.37, 6.53) 0.20 0.71 (0.57, 0.89) 11.64 0.98 (0.58, 1.66) 1.79 6 2.78 0.80 (0.52, 1.25) 0.24 (0.18, 0.31) 16.19 8 2.90 0.63 (0.39, 1.00) 10 0.20 (0.08, 0.50) 1.02 31.71 11 1.01 (0.89, 1.14) 12 0.26 (0.07, 0.92) 0.72 13 0.46 (0.39, 0.54) 24.35 Overall (I-squared = 92.1%, p = 0.000) 0.64 (0.59, 0.69) 100.00 .0734 13.6

For binary (count) data: 4 variables (2*2 data)

For binary (count) data: 4 variables (2*2 data)

insheet using "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\111年 第4季\20221228-初探Meta-analysis\bcg.csv", clear

metan tcases tnoncases ccases cnoncases

若需要指令的協助: help (metan)

rr pools risk ratios (the default). or pools odds ratios. rd pools risk differences. fixed specifies a fixed effect model using the method of Mantel and Haenszel (the default). For 4-variable data fixedi specifies a fixed effect model using the inverse variance method. For 4- or 2-variable data peto specifies that Peto's method is used to pool odds ratios. (For 4-variable data, zero cells) random specifies a random effects model using the method of DerSimonian & Laird, with the estimate of heterogeneity being taken from the from the Mantel-Haenszel model. For 4-variable data randomi specifies a random effects model using the method of DerSimonian & Laird, with the estimate of heterogeneity being taken from the inverse-variance fixed-effect model. For 4- or 2-variable data

For binary (count) data: 4 variables (2*2 data)

metan tcases tnoncases ccases cnoncases, or random

insheet using "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\111年第4季 \20221228-初探Meta-analysis\bcg.csv", clear

metan tcases tnoncases ccases cnoncases, or random

Random effect

S	Study	I OR	[95% Conf.	Interval]	% Weight
1		0.189	0.077	0.462	6.44
2		0.391	0.121	1.262	5.12
3		0.246	0.144	0.422	8.37
4		1.563	0.373	6.548	4.11
5		0.711	0.571	0.886	9.75
6		0.983	0.582	1.661	8.44
7		0.803	0.514	1.256	8.83
8		0.233	0.176	0.308	9.55
9		0.624	0.391	0.996	8.73
10		0.195	0.077	0.497	6.24
11		1.012	0.894	1.146	9.97
12		0.250	0.069	0.908	4.63
13		0.384	0.316	0.466	9.82
D+L pooled C	DR	0.474	0.325	0.691	100.00
	the first entertaint				

Heterogeneity chi-squared = 163.94 (d.f. = 12) p = 0.000 I-squared (variation in OR attributable to heterogeneity) = 92.7% Estimate of between-study variance Tau-squared = 0.3682

Test of OR=1 : z= 3.88 p = 0.000

For binary (count) data: **3 variables**

insheet using "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\111年第4季 \20221228-初探Meta-analysis\nodm.csv", clear

metan rr ll ul

	ES ES	[95% Conf.	Interval]	% Weight
1	2.900	1.200	6.600	0.08
2	0.830	0.470	1.450	2.39
1	1.010	0.510	2.000	1.03
1	1.080	1.080	1.900	3.41
	0.530	0.180	1.550	1.22
	1.170	0.660	2.100	1.11
•	1.040	0.910	1.190	29.27
	1.080	0.790	1.500	4.55
1	1.400	1.040	1.800	3.97
.0	1.080	0.920	1.270	18.73
1	1.860	1.110	3.130	0.56
.2	1.340	1.120	1.600	9.96
13	1.280	0.880	1.860	2.39
.4	0.930	0.570	1.510	2.60
.5	1.440	1.090	1.900	3.50
.6	1.800	0.200	14.700	0.01
.7	1.300	0.700	3.300	0.34
8	1.960	1.110	3.450	0.42
.9	1.180	0.570	2.490	0.62
0	1.900	1.200	3.200	0.57
21	1.600	1.100	2.200	1.90
2	1.310	0.750	2.300	0.96
3	2.180	1.440	3.290	0.67
	2.220	1.080	4.580	0.19
24	1	0 770	1.510	4.19
4	1.080	0.770		
24 25 26	1.080	1.080	2.150	2.00
25 26 27	1.080	1.080	2.150 3.820	2.00
4 15 16 17 18	1.080 1.520 2.310 1.900	1.080 1.400 1.510	2.150 3.820 2.390	2.00 0.39 2.96

For binary (count) data: 3組數字轉2組數字 gen logrr=ln(rr) gen selogrr=(ln(ul)-ln(ll))/3.92

insheet using "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\111年第4季 \20221228-初探Meta-analysis\nodm.csv", clear

metan logrr selogrr

. gen logrr=ln(rr)

gen selogrr=(ln(ul)-ln(ll))/3.92

. metan logrr selogrr

Study	ES ES	[95% Conf.	Interval]	% Weight
1	1.065	0.212	1.917	0.51
2	-0.186	-0.750	0.377	1.17
3	0.010	-0.673	0.693	0.79
4	0.077	-0.205	0.359	4.64
5	-0.635	-1.711	0.442	0.32
6	0.157	-0.422	0.736	1.11
7	0.039	-0.095	0.173	20.58
8	0.077	-0.244	0.398	3.60
9	0.336	0.062	0.611	4.92
10	0.077	-0.084	0.238	14.25
11	0.621	0.102	1.139	1.38
12	0.293	0.114	0.471	11.64
13	0.247	-0.127	0.621	2.64
14	-0.073	-0.560	0.415	1.56
15	0.365	0.087	0.642	4.80
16	0.588	-1.561	2.736	0.08
17	0.262	-0.513	1.038	0.62
18	0.673	0.106	1.240	1.15
19	0.166	-0.572	0.903	0.68
20	0.642	0.151	1.132	1.54
21	0.470	0.123	0.817	3.08
22	0.270	-0.290	0.830	1.18
23	0.779	0.366	1.192	2.17
24	0.798	0.075	1.520	0.71
25	0.077	-0.260	0.414	3.27
26	0.419	0.074	0.763	3.12
27	0.837	0.335	1.339	1.47
28	0.642	0.412	0.871	7.02
I-V pooled ES	0.245	0.184	0.305	100.00

Heterogenei	ty chi-squ	lared =	63.52 (d.t.	=	27) p = 0.000		
I-squared (variation	in ES a	attributable	to	heterogeneity)	=	57.5%

Test of ES=0 : z= 7.88 p = 0.000

Study ID	ES (95% CI)	% Weight
1	1.06 (0.21, 1.92)	0.51
2	-0.19 (-0.75, 0.38)	1.17
3	0.01 (-0.67, 0.69)	0.79
4 +	0.08 (-0.21, 0.36)	4.64
5	-0.63 (-1.71, 0.44)	0.32
6	0.16 (-0.42, 0.74)	1.11
7 🔸	0.04 (-0.09, 0.17)	20.58
8	0.08 (-0.24, 0.40)	3.60
9	0.34 (0.06, 0.61)	4.92
10 🔶	0.08 (-0.08, 0.24)	14.25
11	0.62 (0.10, 1.14)	1.38
12 🔶	0.29 (0.11, 0.47)	11.64
13	0.25 (-0.13, 0.62)	2.64
14	-0.07 (-0.56, 0.41)	1.56
15	0.36 (0.09, 0.64)	4.80
16	0.59 (-1.56, 2.74)	0.08
17	0.26 (-0.51, 1.04)	0.62
18	 0.67 (0.11, 1.24) 	1.15
19	0.17 (-0.57, 0.90)	0.68
20	0.64 (0.15, 1.13)	1.54
21 ++-	0.47 (0.12, 0.82)	3.08
22	0.27 (-0.29, 0.83)	1.18
23	0.78 (0.37, 1.19)	2.17
24	0.80 (0.08, 1.52)	0.71
25	0.08 (-0.26, 0.41)	3.27
26	0.42 (0.07, 0.76)	3.12
27	0.84 (0.34, 1.34)	1.47
28	0.64 (0.41, 0.87)	7.02
Overall (I-squared = 57.5%, p = 0.000)	0.24 (0.18, 0.31)	100.00
-274 0	2 74	
	5. F T	

研究出現高異質性怎麼辦?

I² ≤ 50%: Homogeneous (fixed effect) I² > 50%: Heterogeneity (random effect mode)

TCVGH

研究出現高異質性怎麼辦?

- 不要先急著作統合分析
 - □ 統合性迴歸分析 (meta-regression)
 - □ 次群組分析 (subgroup-analysis):找出具有明顯的 category 差別的變項
 - ▶ 總論文數小於10篇以下, 盡量不要作統合性迴歸分析 → Egger' s test
 - □ 敏感度分析 (sensitivity analysis):
 - ▶ 將某些不合適的論文(例如壁報或品質差的論文) 刪除
 - □ 使用Random effect model

圖像化評估 Publication Bias: Funnel Plot

「出版性偏差」(publication bias):研究的質素相若,但報告較大效應值的大型研究,相比於報告較小、或沒有效應的小型研究更常被發表出版的情況。 「出版性偏差」的風險:會令綜合性的研究並不能準確地代表某主題的所有研究,而只偏 重於較極端的結果。

漏斗圖:(A) 有出版性偏差、(B) 無出版性偏差

圖像化評估Publication Bias: Funnel Plot

search(metafunnel)
search(metabias)

insheet using "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\111年第4季 \20221228-初探Meta-analysis\afreg.csv", clear

metafunnel logrr selogrr

metafunnel logor selogor

圖像化評估Publication Bias: Funnel Plot → Small size effect: Egger's test

search(metafunnel)
search(metabias)

insheet using "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\111年第4季 \20221228-初探Meta-analysis\afreg.csv", clear

metafunnel logor selogor, egger

metabias logor selogor, egger

```
. metabias logor selogor, egger graph
Note: default data input format (theta, se_theta) assumed.
Tests for Publication Bias
Begg's Test
  adj. Kendall's Score (P-Q) =
                                   -12
                                 18.27 (corrected for ties)
          Std. Dev. of Score =
           Number of Studies =
                                    14
                                 -0.66
                                 0.511
                    Pr > |z| =
                                  0.60 (continuity corrected)
                                 0.547 (continuity corrected)
                    Pr > |z| =
```

Egger's test

Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
slope bias	. 3068297 -2. 8082	1.247459 3.130834	0.25	0.810 0.387	-2.41115 -9.629702	3.024809 4.013302

Stata 統計軟體教育訓練課程

Network Meta-analysis

安裝Network Meta-analysis相關套件

*從以下開始安裝 * MA/NMA net from "http://www.homepages.ucl.ac.uk/~rmjwiww/stata/meta/" net install network.pkg, replace net install mvmeta.pkg, replace

*Network plot ssc install netplot net from "https://clinicalepidemio.fr/Stata" net install network_graphs.pkg, replace net install metamiss2.pkg, replace

help network graph

SJ-15-4 st0411 . Visualizing assumptions and results in network meta-analysis A. Chaimani and G. Salanti (help network graphs, clusterank, ifplot, intervalplot, mdsrank, netfunnel, netleague, netweight, networkplot, sucra if installed) Q4/15 SJ 15(4):905-950 provides a suite of commands with graphical tools to facilitate the understanding of data, the evaluation of assumptions, and the interpretation of findings from network meta-analysis

* SE code

net from "http://www.stata-journal.com/software/sj10-4/" net install st0043_2.pkg, replace

Preparing for Analysis: 先設定長檔案 For binary (count) data:

use "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\112年 生統課程規劃\護理部-Stata\Stata-Network meta_new\long_data.dta ", clear

network setup d n, studyvar (study) trtvar(trt) ref(A)

File	Data Editor (Brow Edit View	vse) - [long_d Data To	data] pols Q T _	John (da 201	d: number of events n: total sample size studyvar → study: variable of study title trtvar → trt: variable of treatment
	stud	y[']	A	listityüdzüt	ref: A or Placebo
	study	d	n	trt	Tel. A of fideebo
1	Alshryda2013	10	80	C	
2	Alshryda2013	26	81	А	
З	Barrachina2016	8	35	E	
4	Barrachina2016	4	36	В	
5	Barrachina2016	14	37	А	
6	Benoni2000	9	20	В	
7	Benoni2000	15	19	A	
8	Benoni2001	4	18	E	
	File File 1 2 3 4 5 6 7 8	Data Editor (Brown File Edit View I Alshryda2013 Alshryda2013 Alshryda2013 Barrachina2016 Barrachina2016	Data Editor (Browse) - [long_o File Edit View Data To To To To Study To Study To Alshryda2013 10 Alshryda2013 10 Alshryda2013 26 Barrachina2016 8 Barrachina2016 4 Barrachina2016 14 Barrachina2016 9 Renoni2000 9 Benoni2000 15 Benoni2000 4	Data Editor (Browse) - [long_data] File Edit View Data Tools Image: Study Image: Study[1] Image: Study[1] Image: Study[1] Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: S	File Edit View Data Tools File Edit View Data Tools Image: Study Image: Study[1] Alshryda2013 Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study Image: Study <t< th=""></t<>

先設定檔案 for Network Meta-analysis

28

Α

Placebo

study[1]

network setup d n, studyvar (study) trtvar(trt)

В

IV_single

USE

Alshryda2013

С

IV_double

USE

trt∨ar(trt) ref(A)			. network setup d Treatments used A (reference): B: C: D: E:	n, studyvar (stu	udy) trtvar(trt A B C D E	:) ref(A)		
D		E		Measure Studies ID variable: Number dropped	:	Log odds study 1	ratio		
Topical_use	Com n_IV	Combinatio n_IV_and_t		IDs with zero cells: - count added to all their cells: IDs with augmented reference arm: - observations added: - mean in augmented observations:		24 "Xie2016 .s: .5 "North26 0.00001 ns: study-spe	''Xie2016'' `'Yamasaki2004'' .5 `'North2016'' `'Xie2016'' 0.00001 study-specific mean		
	U	olear		Components: D.f. for incon D.f. for heter Current data	sistency: ogeneity:	1 (connec 8 16	ted)		
				Data format: Design variabl Estimate varia Variance varia Command to lis	e: bles: bles: t the data:	augmented _design _y* _S* list stud	l ly _y* _S*, noo	o sepby(_design)	
dD nD	dE	nE	_design	у_В	_y_C	_y_D	_y_E	_S_B_B	

	study	dA	nA	dB	nB	dC	nC	dD	nD	dE	nE	_design	_y_B	_y_c	_y_D	_y_e	_S_B_B
1	Alshryda2013	26	81			10	80					A C		-1.1966735			
2	Barrachina2016	14	37	4	36					8	35	ABE	-1.5830047			71995844	.39615683
3	Benoni2000	15	19	9	20							A B	-1.5224265				.51868687
4	Benoni2001	8	20							4	18	A E				84729786	
5	Claeys2007	6	20							1	20	A E				-2.0971411	
6	Ekb2000	1	20	1	20							A B	0				2.1052632
7	Fraval2017	6	51	1	50							A B	-1.8769173				1.2092971
8	Garneti2004	14	25							16	25	A E				.33420209	
9	Hsu2015	9	30	2	30							A B	-1.7917595				.69444444
10	Husted2003	7	20	2	20							A B	-1.5781854				.77533578
11	Johansson2005	23	53							8	47	AE				-1.3184169	

Step 1: Generating Network Geometry

Network plot: 輸入指令 network map

Step 2: Testing for Inconsistency

30

■ Global inconsistency Test 輸入指令 network meta inconsistency

Method = reml	. likelihaad -	24 694006		Number of	dimensions	= 4
Restricted 10	g likelinood =	-34.684006		Number of	observations	5 = 24
	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
_у_В						
des_ABE	2177834	.6846	-0.32	0.750	-1.559575	1.124008
_cons	-1.365221	.269296	-5.07	0.000	-1.893032	8374108
_y_c						
des_ACE	6561662	.6028711	-1.09	0.276	-1.837772	.5254395
des_BC	.1947812	.6700162	0.29	0.771	-1.118426	1.507989
des_CDE	.6167358	.974232	0.63	0.527	-1.292724	2.526195
_cons	-1.070454	.3665995	-2.92	0.004	-1.788976	3519321
_y_D						
des_CDE	.6929186	1.922747	0.36	0.719	-3.075596	4.461433
_cons	-3.402272	1.051331	-3.24	0.001	-5.462844	-1.3417
_y_E						
des_ACE	9961905	.7114154	-1.40	0.161	-2.390539	.3981581
des_ADE	4487215	.7145929	-0.63	0.530	-1.849298	.9518549
des_AE	2528214	.5704532	-0.44	0.658	-1.370889	.8652463
_cons	7199583	.5262546	-1.37	0.171	-1.751398	.3114817

Estimated between-studies SDs and correlation matrix

	SD	_y_B	_y_c	_y_D	_y_E
_y_B	3.083e-07	1			
_y_c	3.083e-07	.5	1		
_y_D	3.083e-07	.5	.5	1	
_y_E	3.083e-07	.5	.5	.5	1

Estimated between-studies SDs and correlation matrix									
	SD	_y_B	_y_c	_y_D	_y_E				
_y_B	3.083e-07	1							
_y_C	3.083e-07	.5	1						
_y_D	3.083e-07	.5	.5	1					
_y_E	3.083e-07	.5	.5	.5	1				

Testing for inconsistency:

- (1) [_y_B]des_ABE = 0 (2) [_y_E]des_ACE = 0 (3) [_y_C]des_ACE = 0 (4) [_y_E]des_ADE = 0 (5) [_y_E]des_AE = 0 (6) [_y_C]des_BC = 0 (7) [_y_C]des_CDE = 0
- (8) [_y_D]des_CDE = 0

Prob > ch12 = 0.8492

無法拒絕虛無假說 一致性 consistency 的水準可接受

Step 2: Testing for Inconsistency

31

■ Local inconsistency Test 輸入指令 network sidesplit all

network sidesplit all

無法拒絕虛無假說 一致性 consistency 的水準回

Side	Direct		Indirect		Difference			
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	P> z	
AB	-1.387832	.246631	-1.834588	.5000808	.4467555	.5475861	0.415	
AC	-1.346768	.2878734	7355726	.4132222	6111958	.4901931	0.212	
A D	-3.420298	.939617	-3.203182	1.005883	2171159	.9367965	0.817	
AE	-1.08404	.1738511	7891631	.6352852	2948771	.6513169	0.651	
BC	.4895483	.4919413	.2233391	.3632928	.2662092	.6115455	0.663	
ΒE	.8919491	.655003	.3065194	.2968191	.5854297	.7146861	0.413	
CD	-2.534345	1.25485	-2.009367	.9639263	5249778	1.320922	0.691	
CE	0989284	.4620928	.1914716	.3474008	2904	.5783735	0.616	
DE*	2.152297	.8813737	2.593058	1.087671	4407617	.8966076	0.623	

Because inconsistency was found to be absent in both global and local tests, the consistency assumption was accepted

32

► 先設定 network meta consistency

. network meta consistency Command is: mvmeta y S , bscovariance(exch 0.5) longparm suppress(uv mm) vars(y B y C y D y E) Note: using method reml Note: using variables _y_B _y_C _y_D _y_E Note: 24 observations on 4 variables Note: variance-covariance matrix is proportional to .5*I(4)+.5*J(4,4,1) initial: log likelihood = -49.494181 log likelihood = -49.494181 rescale: rescale eq: log likelihood = -41.242314 Iteration 0: log likelihood = -41.242314 Iteration 1: log likelihood = -41.138072 log likelihood = -41.13807 Iteration 2: Multivariate meta-analysis Variance-covariance matrix = proportional .5*I(4)+.5*J(4,4,1) Number of dimensions Method = reml 4 = Restricted log likelihood = -41.13807 Number of observations = 24 Coefficient Std. err. z P> | z | [95% conf. interval] _y_B _cons -1.470223 .2250083 -6.53 0.000 -1.911231-1.029215 _y_c -1.152938.2422897 -1.627817 _cons -4.76 0.000 -.6780585 _y_D _cons -3.327687 .8504168 -3.91 0.000 -4.994473-1.660901 _y_E cons -1.066367 .1694118 -6.29 0.000 -1.398408 -.7343258

Estimated between-studies SDs and correlation matrix

	SD	_y_B	_y_c	_y_D	_y_E
_y_B	2.246e-07	1			
_y_c	2.246e-07	.5	1		
_y_D	2.246e-07	.5	.5	1	
_y_E	2.246e-07	.5	.5	.5	1

33

■ Network forest plot (NFP) 輸入:

network forest

Test of consistency: chi2(8)=4.09, P=0.849

34

Network forest plot (NFP) 輸入:

network forest, msize (*0.15) diamond eform xlabel (0.1 1 10 100) colors (black blue red) list

<diamond> uses a diamond shape to show summary effect sizes

<eform> generates transformed indices to make it easy to interpret the forest plot

35

■ Network forest plot (NFP) 輸入:

intervalplot

36

Network forest plot (NFP) and interval plot 輸入:

intervalplot, eform

ES: effect size

<eform> generates transformed indices to make it easy to interpret the forest plot

37

■ Network forest plot (NFP) and interval plot 輸入:

intervalplot, eform null (1) labels (Placebo IV_single IV_double Topical Combination) margin (10 8 5 10) textsize (2) xlabel (0.01 0.1 1 10)

intervalplot, eform null (1) labels (Placebo IV_single IV_double Topical Combination) separate margin (10 8 5 10) textsize (2) xlabel (0.01 0.1 1 10)

<eform> generates transformed
indices to make it easy to
interpret the forest plot

<separate> and < margin>

set the ranges to generate easyto-read plots, the values of which should be appropriately determined by the user

Figure 5. Interval plot. Cl, confidence interval

Step 4: Determining Relative Rankings of Treatments

38

Identify superiority 輸入:

network rank min

network rank min

Command is: mvmeta, noest pbest(min in 1, zero id(study) stripprefix(_y_) zeroname(A) rename(A = A, B = B, C = C, D = D, E = E))

Estimated probabilities (%) of each treatment having each rank

- assuming the minimum parameter is the best

- using 1000 draws

- allowing for parameter uncertainty

		Treatment									
Rank	A	В	С	D	E						
Best	0.0	1.4	0.4	98.1	0.1						
2nd	0.0	81.2	12.5	1.1	5.2						
3rd	0.0	13.4	51.3	0.2	35.1						
4th	0.0	4.0	35.8	0.6	59.6						
Worst	100.0	0.0	0.0	0.0	0.0						

network rank max

network rank max

```
Command is: mvmeta, noest pbest(max in 1, zero id(study) stripprefix(_y_) zeroname(A) rename(A = A, B = B, C = C, D = D, E = E))
```

Estimated probabilities (%) of each treatment having each rank

assuming the maximum parameter is the best

using 1000 draws

- allowing for parameter uncertainty

		Treatment								
Rank	A	В	С	D	E					
Best	100.0	0.0	0.0	0.0	0.0					
2nd	0.0	3.0	33.7	0.3	63.0					
3rd	0.0	13.3	54.2	0.3	32.2					
4th	0.0	82.0	12.0	1.2	4.8					
Worst	0.0	1.7	0.1	98.2	0.0					

Step 4: Determining Relative Rankings of Treatments

39

using 10000 draws

Rank

Best 2nd

3rd

4th

Worst

SUCRA

MEAN RANK

Identify superiority 輸入:

assuming the minimum parameter is the best

1.5

80.1

15.4

3.0

0.0

2.2

0.7

Treatment

0.2

13.7

50.3

35.8

0.0

3.2

0.4

D

98.3

1.0

0.3

0.4

0.0

1.0

1.0

Е

0.0

5.2

34.0

60.8

0.0

3.6

0.4

- allowing for parameter uncertainty

0.0

0.0

0.0

0.0

5.0

0.0

100.0

network rank min, line cumulative xlabel (1/5) seed (10000) reps (10000) meanrank

SUCRA: Surface under the cumulative ranking \rightarrow more precise estimation of cumulative ranking probabilities

Step 3: Creating Plots and League Table of Effect Size by Treatment Step 5: Checking for Publication Bias

use "D:\助理研究員\中榮醫研部-生統小組\全院教育課程規劃-2022oct\112年生統課程規劃\護理部-Stata\Stata-Network meta_new\funnel plot.dta ", clear

Comparative effect size (diff) and standard error (se) for each pair of treatment 輸入:

network forest, msize (*0.15) diamond eform xlabel (0.1 1 10 100) colors (black blue red) list

. network forest, msize (*0.15) diamond eform xlabel (0.1 1 10 100) colors (black blue red) list Warning: inconsistency matrix of fitted values not found - forest plot will be incomplete Listing of results extracted from current data and saved network meta-analyses:

	t1	t2	design	type	studyvar	diff	se
1.	A	в	ABE	study	Barrachina2016	-1.5830047	.62940991
2.	A	В	AB	study	Benoni2000	-1.5224265	.72019919
з.	A	В	AB	study	Ekb2000	0	1.4509525
4.	A	В	AB	study	Fraval2017	-1.8769173	1.0996804
5.	A	В	AB	study	Hsu2015	-1.7917595	.83333333
6.	A	В	AB	study	Husted2003	-1.5781854	.88053153
7.	A	В	AB	study	Lee2013	-1.3783262	.52205333
8.	A	В	AB	study	Lemay2004	-1.6204877	.69403529
9.	A	В	AB	study	Niskanen2005	62415431	.69264847
10.	A	В		cons		-1.4702229	.22500835
11.	Α	с	AC	study	Alshryda2013	-1.1966735	.41343569
12.	A	С	AC	study	Martin2014	6061358	.79296146
13.	A	С	ACE	study	Wei2014	-1.7266202	.47860044
14.	A	С		cons		-1.1529375	.24228968
15.	Α	D	ADE	study	Yi2016	-3.4022721	1.0513314
16.	A	D		cons		-3.327687	.85041684
17.	Α	E	ABE	study	Barrachina2016	71995844	.52625457
18.	Α	E	AE	study	Benoni2001	84729786	.72784745
19.	A	E	AE	study	Claeys2007	-2.0971411	1.1361016
20.	A	Е	AE	study	Garneti2004	.33420209	.57961088

Step 3: Creating Plots and League Table of Effect Size by Treatment Step 5: Checking for Publication Bias

► Network Funnel Plot 輸入:

netfunnel diff se t1 t2, random bycomparison

總結

- 僅由單一個隨機分派研究的結果來下結論是一種比較危險的行為,萬一這個 結果有隨機錯誤時(error by chance),我們就有可能對某個醫學議題造成 誤判。
- 統合分析可以提供較客觀的整合分析結果,對於不合適的研究我們也可藉由 敏感性分析將其剔除,而使分析結果更正確。
- 隨機分派研究與觀察性研究的證據強度(level of evidence)是不同的,我 們在看一篇統合分析的論文時一定要注意所選取論文的研究種類、品質、和 訊息強度。

統合分析和隨機分派研究論文結果牴觸的可能原因: 某些特定族群被過度呈現

生統小組:統計方法教育訓練

滿意度問卷QR Code

Thank you for listening