

主題: Principle, Application and Current state of Confocal base High Throughput / High Content Bioimaging Sytem 高通量、高內涵、自動化 共軛焦細胞影像分析系統的原理與應用

時間: 98年7月29(星期三) 上午 10:00-11:30

下午 14:00-16:00 (兩場課程相同請同仁任選一場參加)

地 點:教學研究部 (研究大樓第三會場)

演講者:楊利君 Glenn Yang - 尚博生物科技有限公司 產品部主任

Glenn Yang.

主辦單位:臺中榮民總醫院 教學研究部

TEL:8862-27855860

協辦單位:尚博生物科技有限公司

CELL:0953062485

Email:apoptosistw@gmail.co 尚博生物科技有限公司 電話: (©2)2785-5860

What's from Image to Analysis?

PC12 Neurite Growth

How many cell body?
Um...pretty much ...

124 cell body are counted

How many branch? Um...several I guess...

16 branch are found

How long they grow? Um...Pretty long I guess...

48 pixel average of each cell

What's from Image to Analysis?

Effect of therapy on the density of antigen expression in human skin

Normal skin before therapy

Normal skin after therapy

Marker expression before therapy

Before therapy the percentage of cells that react with the marker was 34% and the mean intensity was 39.

After therapy the percentage of cells that react with the marker was 45 and the mean intensity was 51.

Why from Image to Analysis?

REASON:
BECAUSE SEEING IS NOT REALLY BELIEVING!!

How many of the blue nuclei are also stained in red (in %)? (Blue:DAPI, Red:Ki67)

1.≤ **5**%

2.5~10%

3.10~15%

4.15~20%

5.>20%

Why from Image to Analysis?

REASON:
BECAUSE SEEING IS NOT REALLY BELIEVING!!

How many of the blue nuclei are also stained in red (in %)? (Blue:DAPI, Red:Ki67)

Expert's estimations: 0,5% - 18% (n=20)

Observer independent measurement:

21,11%

Why from Image to Analysis?

REASON:
BECAUSE SEEING IS NOT REALLY BELIEVING!!

GV = 0: BLACK

GV = 255: WHITE

What is the difference in GV between A and B?

1.∆ ≤ 20

 $2.\Delta \leq 50$

3.∆ ≤ 100

 $4.\Delta > 100$

REASON: BECAUSE SEEING IS NOT REALLY BELIEVING!!

How to judgement the different of each cell?
What if this judgement is cancer marker, prlifereation marker?

Quantitative Tool from Cell to Organic

Introducing Cellbio biotechnology Itd

From Cellular level to Animal Assay

專業技術、代客服務

- ₩ 流式細胞儀
- ₩ 全光譜共軛焦影像分析儀
- ₩ 高內含共軛焦生物影像分析儀

Goals of this Presentation...

- Introduce Image based Cytometry
- Current state technologies of HTS/HCS Image Cytometry
- Several Applications of HTS/HCS Image Cytometry

Concept of Image Based Cytometry

The cell is the ultimate functional endpoint

- Cytomics is going to be important because it is the cell that is the ultimate functional endpoint. The cell is the **minimal functional unit** within our physiology and thus the functional unit that can be manipulated.
- Complexity of cell function is only part of why Cytomics will become a major field of study. Every cell is different. By studying each cell's unique function, that cell type can be further modeled for subsequent analysis using statistical techniques.
- As the field of tissue engineering explodes, it will not be long before cellular engineering will be a most important component of which an essential element will be a full understanding of Cytomics.

gene

protein

cell

Hey buddy...
Don't you know you genes, proteins and organelles are in **my** territory **now**!!

2 Major systems for Cell Functional Assay...

Image Base Cytometry

Why Image?

There something FACS limitation:

- Limit morphological Information
- Limit distribution information
- Not very suit for adherence cell
- Not very suit for kinetic assay
- Not very suit for long time assay (Re-analysis)

Advantage of Image cytometry:

- Rich Information (High Content)
- Perfect for heterogeneous population
- Very versatile technology
- Very suit for adherence cell
- Very suit for kinetic assay
- Very suit for long time assay

Images data contain a lot of information, but it is time consuming and difficult to extract it...

Current state technologies of Image based Cytometry HCS/HTS Analysis Process

BD 435/855 Bioimager Lo A CONTRACTOR OF THE CONTRACTOR Response Levels vs. Dose Levels 1.00E-09 1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 Dose (on log scale)

Summary:

Imaging from a Flow Cytometry Perspective

Flow Cytometry			Automated Imaging		
Fluorescence intensity			Fluorescence intensity Redistribution Cell motility Marabalagy		
Single cell resolution using PMT			Morphology Subcellular resolution using CCD		
Thousands to hundreds of thousands of suspended cells			One to thousands of suspension or adherent cells		
Multiplexible – 12+ colors			Multiplexible – 4+ colors		
Cells can be damaged or lost after flow			Cells can be revisited and reanalyzed over time		
Strengths: • Cell preparation (sorting) • Statistical population analysis • Low abundance events			Strengths: • Morphological measurements • Spatial analysis • Images can be reanalyzed • Visual data		
	Medium Throughput Content	High	Low Throu	Medium Ighput Content	High

Current state technologies of HTS/HCS Image Cytometry

Current state technologies of Image based Cytometry

New idea of Image based Cytometry:

- I.Fast and Automatic
 - --- High Throughput (96 well / 384 well format)
- **II.**Multi-information
 - ---High Content (Multi-color image)
- III. High Image quality and precise analysis
- ---Confocal Image (LSCM / Spinning Disk / OptiGrid
 IV.Quantification / Qualification / Coordination
 - ---Powerful software (segmentation)

New idea of Image based Cytometry:

I.Fast and Automatic---High Throughput

96 well / 384 well format , Fully Automation data acquire system

New idea of Image based Cytometry:

I.Fast and Automatic---High Throughput

96 well / 384 well format , Fully Automation data acquire system

New idea of Image based Cytometry:

II.Multi-Information---High Content

高內涵細胞分析技術(High Content Screening, HCS)是在<u>保持細胞結構</u>和<u>功能完整性</u>的前提下,利用<u>螢光試劑</u>標定目標物質,在細胞內呈現的<u>功能,與時間和空間</u>相對應之資訊。因此高內涵細胞分析技術(HCS)整合了以細胞為基礎的分析,<u>高解析螢光顯微鏡</u>和細胞及次細胞內自動分析之影像處理演算技術,使得以往缺乏較客觀有效測量細胞生理現象,例如:<u>細胞形態改變、細胞分化、細胞架構改變、細胞與細胞間之交</u>互作用、趨化性、移動性和空間的分布改變等,得以有效的以數據呈現

- Huge number of Variable & Parameters
- Very High Speed
- Huge data sets
- Opportunity for Rapid classification

Much of this can become Real-Time decision making

New idea of Image based Cytometry :

II.Multi-Information---High Content

Time Information With Kinetic Mode

Single-cell Kinetic Imaging Reveals Heterogeneous Calcium Response

- Maximal response from baseline
- Rate of fall
- Treatment zones

- Rate of rise
- Difference in 2 peaks

New idea of Image based Cytometry:

II.Multi-Information---High Content

Spatial Information with 3D Image

Z Dimension

Single Plane

- Image peripheral events
- Improve resolution
- Image specific cell layer
- Remove background fluorescence

Collapsed Z

- Collect all fluorescence In sample
- Improve resolution
- Quantities fluorescence

...can also capture over time in kinetic mode.

New idea of Image based Cytometry:

III.High Image Quality and Precise Analysis---Confocal

Benefit of Confocal Image 1: Clear single plane of image

New idea of Image based Cytometry:

III.High Image Quality and Precise Analysis---Confocal

Benefit of Confocal Image 2: Better 3D Structure

New idea of Image based Cytometry :

III.High Image Quality and Precise Analysis---Confocal

Benefit of Confocal Image 3: accurate counting and analyze result

H2AX foci

Segmentation

94 foci identified 118 foci identified 25% increase in foci count

New idea of Image based Cytometry:

III.High Image Quality and Precise Analysis---Confocal

Benefit of Confocal Image 4: Reduce photobleach

New idea of Image based Cytometry:

IV.Quantification / Qualification / Coordination

Powerful Software: Image Process

Unprocessed Image

Background Subtracted Image

New idea of Image based Cytometry :

IV.Quantification / Qualification / Coordination

Enlarge event number: Montage

3x3 Montage ~ 180 cells

New idea of Image based Cytometry:

IV.Quantification / Qualification / Coordination

Identification: Cell Segmentation (Region Of Interest) and Quantification, Qualification

- Dual output ROIs used in translocation assays
- Masked dilation to secondary channel
- Many possibilities from common interface

Automatic thresholding

New idea of Image based Cytometry:

IV.Quantification / Qualification / Coordination

Data Coordination and Data Export

New idea of Image based Cytometry:

IV.Quantification / Qualification / Coordination

Intelligent Interface and Data Coordination

Summary:

Current state technologies of Image based Cytometry

---High Throughput

Fully automatic hardware system
Working with microtiter plate or multiwell plate Strait forward assay protocol

---High Content

Multicolor image Spatial and time information Cell-cell, well-well, sample-sample comparison

---Confocal Image

Better image quality for precise data analysis Spatial information

---Powerful software

Artificial Intelligent

Applications of HTS/HCS Image Cytometry

There are 4 Basic Assay Categories of HCS Image analyzer

1. Fluorescence intensity change

- Calcium flux
- Phosphorylation
- Biomarker activation
- Protein degradation
- Image cytometry

2. Fluorescence distribution

- Cytoplasm to nucleus (NFκB)
- Cytoplasm to plasma membrane (PKCα)
- Plasma membrane to organelle (Transfluor GPCR)
- Protein co-localization

3. Morphological 4. Cell Movement change

- Neurite outgrowth
- Angiogenesis
- Cell differentiation
- Apoptosis

- Chemotaxis/migration
- Wound healing
- Metastasis/invasion
- Long-term tracking

HCS Application

1. Fluorescence Intensity Changes

- Investigate heterogeneous cell populations:
 Identify percentage of cells responding in a population (image cytometry)
- Work with few cells:
 Region of interest can be whole cell, structure, or whole field of view

2. Fluorescence Distribution

- Measure cell changes where total fluorescence intensity does not change
- Measure biomolecular colocalization

3. Morphometric Measurements

• Make measurements on cells using structural dyes/antibodies

4. Cell Movement

Measure cellular mobility/motility and invasion

1.Fluorescence Intensity Changes

Investigate heterogeneous cell populations: Single-cell Kinetic Imaging Reveals Heterogeneous Calcium Response

Living Cell, Kinetic Assay

BD Pathway 855 with Environment Control &

Liquid Handling System

1.Fluorescence Intensity Changes

Investigate heterogeneous cell populations: Single-cell Kinetic Imaging Reveals Heterogeneous Calcium Response

1.Fluorescence Intensity Changes Working with few cells: Image Based Cell Cycle Analysis Colcemid 500ng/mL Control cells **BrdU** (S phase) Aphidicolin 500ng/mL Negative 20 (non cycling) 15 10

Normal

Colcemid

■ BrdU **□** pHistone

Aphidicolin

1.Fluorescence Intensity Changes

Working with few cells: Indicator of Apoptosis in Image-based Assays

HeLa cells 20x objective Cleaved caspase – green Nuclei - blue

2.Fluorescence Distribution

Measure cell changes where total fluorescence intensity does not change

TNF-α 25 ng/m 30 min

IL-1α 25 ng/ml 30 min

percent cells

2.Fluorescence Distribution

Measure cell changes where total fluorescence intensity does not change

Chi^2

itial(A1)

Final (A2)

EC50 (x0)

Power (p)

Overlay (Hoechst/Alexa488)

Control

2951.83789

40.15385

32.19608

0.64479

1.00818E-10

237.39175

756.02983

1.75846

4.57328E-10

3. Mophometric Measurement

Make measurements on cells using structural dyes/antibodies:

Angiogenesis

- Used to determine the +/- response of primary endothelial cells to compounds
 - Tumor formation
 - Wound healing
 - Retinopathy
 - Macular degeneration
- Model system
 - HUVEC-2 cells
 - Matrigel Matrix coated plates
 - Network of tubules formed live cell stain & imaging
 - Suramin treatment retards the formation of blood vessels

3. Mophometric Measurement

Make measurements on cells using structural dyes/antibodies: Angiogenesis

HUVEC angiogenesis on BD Matrigel™ Matrix

3. Mophometric Measurement

Make measurements on cells using structural dyes/antibodies: Angiogenesis: Quantitative Data

Tube Total Length

Tube Average Length

Tube Max Length

Tube Branch Count

Tube Segment Count

Tube Count

Tube Nodes Points

3. Mophometric Measurement

Make measurements on cells using structural dyes/antibodies:

Angiogenesis: Neurite Outgrowth

3. Mophometric Measurement

Make measurements on cells using structural dyes/antibodies: Neurite Outgrowth

3. Mophometric Measurement

Make measurements on cells using structural dyes/antibodies: Miotube Fusion

3. Mophometric Measurement

Make measurements on cells using structural dyes/antibodies:

Miotube Fusion

This confocal image is using BD 96-Well Optilux Microplates to increase image quality

4.Cell Movement

Measure cellular mobility/motility and invasion

Invasion

BD Falcon™ HTS FluoroBlok™ 96-Multiwell Insert System

4.Cell Movement

Measure cellular mobility/motility and invasion
 Wound Healing Assay

4.Cell Movement

Measure cellular mobility/motility and invasion

Wound Healing Assay

Image analysis and record by BD IPLab V4 Software

,	711					
N E	Aicrosoft Exce	el - Result	Table.)	ds		×
1	<u>File Edit Y</u> i	iew <u>I</u> nsert	F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata <u>V</u>	/indow <u>H</u> elp	
Ad	o <u>b</u> e PDF					×
	<i>□</i> 🔛 📆	 	Σ٠	100% 🕶 🤾	* 12 12 18 . 4	» »
10	- B U	* * *	pa 🕶	3 - A -	»]	»
	H21 →	fx			1000000	
	А	В	С	D	E	
1	Meas.#	Mean	Area	Perimeter	Major Angle	
2	1	1.3	48.1	86.9	70.5	Ī
3	2	1.8	39.1	71.3	86.7	
4	3	1.2	27.6	50.7	63.3	
5	4	1.0	8.3	18.2	22.3	
6	5	1.2	44.9	81.2	-67.2	
7	6	1.6	50.6	90.8	-74.1	
8	7	1.3	39.8	73.1	4.2	
9	8	1.3	32.3	58.0	44.7	
10	9	1.4	53.6	100.2	2.6	
11	10	1.5	45.1	81.0	22.7	
12	11	1.8	46.4	85.1	12.4	
13	12	1.2	41.9	76.4	-24.9	
14	13	1.4	52.3	90.7	2.3	
15	14	1.3	135.2	249.0	31.6	
16	15	1.3	32.5	59.4	41.7	
17	16	1.4	38.5	70.1	39.8	
18	17	1.2	59.3	110.3	19.7	
19	18	1.5	44.2	81.6	2.6	
20 21	19 20	1.7 1.4	35.7 28.1	65.3	89.5 9.2	
22	20	1.4	37.9	51.9 68.5	18.7	à
23	22	1.7	33.4	61.6	8.5	
24	23	1.6	33.4	62.2	15.8	ğ
25	24	1.6	37.4	66.3	-77.7	
26	25	1.3	33.8	60.5	29.7	
27	26	1.6	64.0	116.0	-68.4	
28	27	1.8	37.4	67.3	24.1	
29	28	1.4	37.4	66.4	83.2	
30	29	1.4	52.7	95.2	69.6	
31	30	1.5	116.7	215.2	-11.4	
32	31	1.5	48.9	84.7	60.3	1
4 4	→ → \ Shee	t1 / Sheet	2 / Shee	13 / ∢	×	
Draw ▼ 🖟 AutoShapes ▼ 🔪 🗆 🔘 🔠 🛗 🐠 ▼ 🚜 ▼ ≡ 💣 👋						
Ready NUM						
	Vi -					-11

3D Reconstruction

Image Acquire by BD Pathway 855 with confocal module

- Fly embryo gastrulationTubulin.
- •PlanApo 60x 1.4 NA
- •0.5um steps
- xz, yz (1-256)George von DassowFriday Harbor, UW

3D Reconstruction

Image Acquire by BD Pathway 855 with confocal module

Time Lapse

Image Acquire by BD Pathway 855 with environment control

- Cell division
- Sand dollar embryos
- Injected with rhodamine-tubulin & Alexa 488 phalloidin.
- •Early- mid blastula
- PlanApo 60x water lens
- George von Dassow & Bill Bement
- •Friday Harbor, UW

4D Image

Image Acquire by BD Pathway 855 with environment control

- Dictyostelium Feeding on Yeast
- •Dictyostelium GFP- cell membrane
- •150ms, 13z steps, 30min
- •Cascade 512B
- David Knecht Department of Molecular and Cell Biology University of Connecticut

Summary and Conclusions

- High content analysis provides a unique opportunity to investigate spatial and temporal events in living cells
- Kinetic measurements can provide useful information (rates of change)
- Managing kinetic data requires real-time data acquisition and data reduction capabilities
- Multiplexed kinetic experimentation requires biological events to be co-occurring

